Application and analyses of texture features based on GF-1 WFV images in monthly information extraction of crops
-
摘要: 农作物种植结构包含农作物种类、数量结构和空间分布特征等信息,是农业科学管理的基础。在不考虑农作物时间序列最佳窗口期的前提下,以石津灌区为研究区,基于高分一号(GF-1)WFV影像计算并分析纹理特征在农作物分类识别中的能力。并在纹理特征分类效果相对较差的时相内引入植被指数,从而弥补纹理在农作物表达上的缺陷。经过对比各组分类结果,可以发现: 在作物结构明显的4,8月份,单独纹理特征的分类精度可以达到80%以上,但是在5,6,7,9月等农作物最复杂的时间段内,分类精度仍低于80%。将植被指数与纹理特征组合后,这4个月份的分类结果有了很大改善,总体分类精度均大于80%,基本满足农业动态监测的需求; 与单独纹理相比,精度提高2.27%~9.75%, Kappa系数提高0.02~0.16; 利用夏玉米的验证样本进行验证,识别精度可以达到98%,识别效果相对完整,破碎程度达到最小化,与其他类别区分度也达到了最优。同时也证明了GF-1WFV纹理特征在农作物种植结构提取中的可用性,尤其是在作物结构相对明显的月份内,可以为影像的农作物提取提供一些有效的信息。Abstract: The crop planting structure consists of information such as crop species, quantity structure, and spatial distribution characteristics, and it serves as the basis for agricultural scientific management. Taking the Shijin irrigation area, Hebei Province as the study area and on the premise of not considering the optimal window period of crop time series, this study calculates and analyzes the ability of texture features in crop classification and identification based on GF-1WFV images. Meanwhile, the vegetation index is introduced into the time phase in which the classification effects based on texture features are poor, in order to make up for the defects of texture in the expression of crops. According to the comparison of the classification results of various groups, the classification accuracy of individual texture features reached greater than 80% in April and August when the crop structure is obvious but was still less than 80% in May, June, July, and September when crops are the most complex. After combining the texture features with the vegetation index, the classification results of the crops in these four months were greatly improved. In detail, the overall classification accuracy was greater than 80%, which basically meets the need for agricultural dynamic monitoring. Meanwhile, the accuracy was improved by 2.27%~9.75 % and the Kappa coefficient was increased by 0.02~0.16 compared to the individual texture features. As verified using summer maize samples, the recognition accuracy reached up to 98%, the recognition effects were relatively complete, the fragmentation degree was the minimum, and the optimal discrimination from other crop categories was achieved. Meanwhile, it also proved that the texture features based on GF-1WFV images can be applied to the extraction of the crop planting structure, especially in the months when the crop structure is relatively obvious, and they can provide some effective information for the information extraction of crops base on images.
-
Key words:
- GF-1 WFV /
- crop planting structure /
- classification /
- texture /
- accuracy /
-
-
[1] Yi Z Y, Zhao H L, Jiang Y Z, et al. Daily evapotranspiration estimation at the field scale:Using the modified SEBS model and HJ-1 data in a desert-oasis area,northwestern China[J]. Water, 2018, 10(5):640.
[2] 张健康, 程彦培, 张发旺. 基于多时相遥感影像的作物种植信息提取[J]. 农业工程学报, 2012, 28(2):134-141.
[3] Zhang J K, Cheng Y P, Zhang F W. Crop planting information extraction based on multi-temporal remote sensing images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(2):134-141.
[4] 马丽, 徐新刚, 贾建华, 等. 利用多时相TM影像进行作物分类方法[J]. 农业工程学报, 2008, 24(s2):191-195.
[5] Ma L, Xu X G, Jia J H, et al. Crop classification method using multi-temporal TM images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(s2):191-195.
[6] 熊元康, 张清凌. 基于NDVI时间序列影像的天山北坡经济带农业种植结构提取[J]. 干旱区地理, 2019, 42(5):1105-1114.
[7] Xiong Y K, Zhang Q L. Extraction of agricultural planting structure based on NDVI time series images in the economic zone of the northern slope of the Tianshan Mountains[J]. Arid Land Geography, 2019, 42(5):1105-1114.
[8] 赵丽花, 李卫国, 杜培军. 基于多时相HJ卫星的冬小麦面积提取[J]. 遥感信息, 2011(2):41-45,50.
[9] Zhao L H, Li W G, Du P J. Winter wheat area extraction based on multi-temporal HJ satellites[J]. Remote Sensing Information, 2011(2):41-45,50.
[10] 潘耀忠, 李乐, 张锦水, 等. 基于典型物候特征的MODIS-EVI时间序列数据农作物种植面积提取方法——小区域冬小麦实验研究[J]. 遥感学报, 2011, 15(3):578-594.
[11] Pan Y Z, Li L, Zhang J S, et al. Extraction method of crop planting area from MODIS-EVI time series data based on typical phenological characteristics:Experimental study on small area winter wheat[J]. Journal of Remote Sensing, 2011, 15(3):578-594.
[12] 侯学会, 牛铮, 高帅, 等. 基于SPOT-VGT NDVI时间序列的农牧交错带植被物候监测[J]. 农业工程学报, 2013, 29(1):142-150,294.
[13] Hou X H, Niu Z, Gao S, et al. Vegetation phenology monitoring in the agro-pastoral ecotone based on SPOT-VGT NDVI time series[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(1):142-150,294.
[14] Dekker R J. Texture analysis and classification of ERS SAR images for map updating of urban areas in The Netherlands[J]. IEEE Transactions on Geoscience & Remote Sensing, 2003, 41(9):1950-1958.
[15] 赵凌君, 秦玉亮, 高贵, 等. 利用GLCM纹理分析的高分辨率SAR图像建筑区检测[J]. 遥感学报, 2009, 13(3):483-490.
[16] Zhao L J, Qin Y L, Gao G, et al. High-resolution SAR image building area detection using GLCM texture analysis[J]. Journal of Remote Sensing, 2009, 13(3):483-490.
[17] 黄健熙, 侯矞焯, 等. 基于GF-1 WFV数据的玉米与大豆种植面积提取方法[J]. 农业工程学报, 2017, 33(7):164-170.
[18] Huang J X, Hou J Z, et al. Extraction method of corn and soybean planting area based on GF-1 WFV data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(7):164-170.
[19] 王利民, 刘佳, 杨福刚, 等. 基于GF-1卫星遥感数据识别京津冀冬小麦面积[J]. 作物学报, 2018, 44(5):762-773.
[20] Wang L M, Liu J, Yang F G, et al. Recognizing the area of winter wheat in Beijing-Tianjin-Hebei based on GF-1 remote sensing data[J]. Acta Agronomica Sinica, 2018, 44(5):762-773.
[21] 刘国栋, 邬明权, 牛铮, 等. 基于GF-1卫星数据的农作物种植面积遥感抽样调查方法[J]. 农业工程学报, 2015, 31(5):160-166.
[22] Liu G D, Wu M Q, Niu Z, et al. Remote sensing sampling survey method of crop planting area based on GF-1 satellite data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5):160-166.
[23] 欧阳玲, 毛德华, 王宗明, 等. 基于GF-1与Landsat8 OLI影像的作物种植结构与产量分析[J]. 农业工程学报, 2017, 33(11):147-156,316.
[24] Ou Y L, Mao D H, Wang Z M, et al. Analysis crops planting structure and yield based on GF-1 and Landsat8 OLI images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(11):147-156,316.
[25] 程乾, 陈金凤. 基于高分1号杭州湾南岸滨海陆地土地覆盖信息提取方法研究[J]. 自然资源学报, 2015, 30(2):350-360.
[26] Cheng Q, Chen J F. Research on the extraction method of land cover information based on the coastal land on the south coast of Hangzhou Bay of GF-1[J]. Journal of Natural Resources, 2015, 30(2):350-360.
[27] 李恒凯, 吴娇, 王秀丽. 基于GF-1影像的东江流域面向对象土地利用分类[J]. 农业工程学报, 2018, 34(10):245-252.
[28] Li H K, Wu J, Wang X L. Object-oriented land use classification of Dongjiang basin based on GF-1 image[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(10):245-252.
[29] 王镕. 基于光谱和纹理特征综合的农作物种植结构提取方法研究[D]. 兰州:兰州交通大学, 2019.
[30] Wang R. Research on the extraction method of crop planting structure based on the integration of spectrum and texture features[D]. Lanzhou:Lanzhou Jiaotong University, 2019.
[31] 权文婷, 王钊. 冬小麦种植面积遥感提取方法研究[J]. 国土资源遥感, 2013, 25(4):8-15.doi: 10.6046/gtzyyg.2013.04.02.
[32] Quan W T, Wang Z. Research on remote sensing extraction method of winter wheat planting area[J]. Remote Sensing for Land and Resources, 2013, 25(4):8-15.doi: 10.6046/gtzyyg.2013.04.02.
[33] 王利民, 刘佳, 姚保民. 基于GF-1影像NDVI年度间相关分析的冬小麦面积变化监测[J]. 农业工程学报, 2018, 34(8):184-191.
[34] Wang L M, Liu J, Yao B M. Monitoring of winter wheat area change based on inter-annual correlation analysis of GF-1 image NDVI[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(8):184-191.
[35] 杨闫君, 占玉林, 田庆久. 基于GF-1/WFVNDVI时间序列数据的作物分类[J]. 农业工程学报, 2015, 31(24):155-161.
[36] Yang Y J, Zhan Y L, Tian Q J. Crop classification based on GF-1/WFVNDVI time series data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(24):155-161.
[37] Peleg S. Multiple Resolution Texture Analysis and Classification[J]. IEEE Trans.PAMI, 2009, 6(4):518-523.
[38] 郑淑丹, 郑江华, 石明辉. 基于分形和灰度共生矩阵纹理特征的种植型药用植物遥感分类[J]. 遥感学报, 2014, 18(4):868-886.
[39] Zheng S D, Zheng J H, Shi M H. Remote sensing classification of planted medicinal plants based on fractal and gray-level symbiotic matrix texture features[J]. Journal of Remote Sensing, 2014, 18(4):868-886.
[40] 宋荣杰, 宁纪锋, 常庆瑞. 基于小波纹理和随机森林的猕猴桃果园遥感提取[J]. 农业机械学报, 2018, 49(4):222-231.
[41] Song R J, Ning J F, Chang Q R. Remote sensing extraction of kiwifruit orchard based on wavelet texture and random forest[J]. Transactions of the Chinese Society of Agricultural Machinery, 2018, 49(4):222-231.
[42] 张超, 金虹杉, 刘哲. 基于GF遥感数据纹理分析识别制种玉米[J]. 农业工程学报, 2016, 32(21):183-188.
[43] Zhang C, Jin H S, Liu Z. Recognition of seed production corn based on texture analysis of GF remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(21):183-188.
[44] 王镕, 赵红莉, 郝震, 等. 一种农作物种植结构月尺度动态提取方法:中国, CN110321861A[P]. 2019-10-11.
[45] Wang R, Zhao H L, Hao Z, et al. A dynamic extraction method of crop planting structure on a monthly scale:China, CN110321861A[P]. 2019-10-11.
[46] 王镕, 赵红莉, 郝震, 等. 纹理特征优选的农作物种植结构月尺度动态提取方法:中国, CN110909652A[P]. 2020-03-24.
[47] Wang R, Zhao H L, Hao Z, et al. The monthly-scale dynamic extraction method of crop planting structure for texture feature optimization:China,CN110909652A[P]. 2020-03-24.
[48] 贾坤, 李强子. 农作物遥感分类特征变量选择研究现状与展望[J]. 资源科学, 2013, 35(12):2507-2516.
[49] Jia K, Li Q Z. Current status and prospects of research on selection of feature variables for crop remote sensing classification[J]. Resources Science, 2013, 35(12):2507-2516.
[50] 王娜, 李强子, 杜鑫. 单变量特征选择的苏北地区主要农作物遥感识别[J]. 遥感学报, 2017, 21(4):519-530.
[51] Wang N, Li Q Z, Du X. Remote sensing identification of main crops in northern Jiangsu based on univariate feature selection[J]. Journal of Remote Sensing, 2017, 21(4):519-530.
[52] 刘晓双, 龚直文, 吴见. 基于多特征的高光谱遥感土地利用信息提取[J]. 南京林业大学学报(自然科学版), 2018, 42(4):141-147.
[53] Liu X S, Gong Z W, Wu J. Multi-feature-based hyperspectral remote sensing land use information extraction[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2018, 42(4):141-147.
[54] 单治彬, 孔金玲. 面向对象的特色农作物种植遥感调查方法研究[J]. 地球信息科学学报, 2018, 20(10):1509-1519.
[55] Shan Z B, Kong J L. Research on object-oriented remote sensing survey method of characteristic crop cultivation[J]. Journal of Geo-Information Science, 2018, 20(10):1509-1519.
-
计量
- 文章访问数: 710
- PDF下载数: 117
- 施引文献: 0