中国自然资源航空物探遥感中心主办
地质出版社出版

月尺度农作物提取中GF-1 WFV纹理特征的应用及分析

王镕, 赵红莉, 蒋云钟, 何毅, 段浩. 2021. 月尺度农作物提取中GF-1 WFV纹理特征的应用及分析. 自然资源遥感, 33(3): 72-79. doi: 10.6046/zrzyyg.2020334
引用本文: 王镕, 赵红莉, 蒋云钟, 何毅, 段浩. 2021. 月尺度农作物提取中GF-1 WFV纹理特征的应用及分析. 自然资源遥感, 33(3): 72-79. doi: 10.6046/zrzyyg.2020334
WANG Rong, ZHAO Hongli, JIANG Yunzhong, HE Yi, DUAN Hao. 2021. Application and analyses of texture features based on GF-1 WFV images in monthly information extraction of crops. Remote Sensing for Natural Resources, 33(3): 72-79. doi: 10.6046/zrzyyg.2020334
Citation: WANG Rong, ZHAO Hongli, JIANG Yunzhong, HE Yi, DUAN Hao. 2021. Application and analyses of texture features based on GF-1 WFV images in monthly information extraction of crops. Remote Sensing for Natural Resources, 33(3): 72-79. doi: 10.6046/zrzyyg.2020334

月尺度农作物提取中GF-1 WFV纹理特征的应用及分析

  • 基金项目:

    国家重点研发计划项目“国家水资源动态评价关键技术与应用”(2018YFC0407705)

    国家重点研发计划项目“国家水资源立体监测体系与遥感技术应用”(2017YFC0405800)

详细信息
    作者简介: 王 镕(1993-)女,硕士,主要研究方向为农业与水资源遥感应用。Email:942437026@qq.com。
  • 中图分类号: TP79

Application and analyses of texture features based on GF-1 WFV images in monthly information extraction of crops

  • 农作物种植结构包含农作物种类、数量结构和空间分布特征等信息,是农业科学管理的基础。在不考虑农作物时间序列最佳窗口期的前提下,以石津灌区为研究区,基于高分一号(GF-1)WFV影像计算并分析纹理特征在农作物分类识别中的能力。并在纹理特征分类效果相对较差的时相内引入植被指数,从而弥补纹理在农作物表达上的缺陷。经过对比各组分类结果,可以发现: 在作物结构明显的4,8月份,单独纹理特征的分类精度可以达到80%以上,但是在5,6,7,9月等农作物最复杂的时间段内,分类精度仍低于80%。将植被指数与纹理特征组合后,这4个月份的分类结果有了很大改善,总体分类精度均大于80%,基本满足农业动态监测的需求; 与单独纹理相比,精度提高2.27%~9.75%, Kappa系数提高0.02~0.16; 利用夏玉米的验证样本进行验证,识别精度可以达到98%,识别效果相对完整,破碎程度达到最小化,与其他类别区分度也达到了最优。同时也证明了GF-1WFV纹理特征在农作物种植结构提取中的可用性,尤其是在作物结构相对明显的月份内,可以为影像的农作物提取提供一些有效的信息。
  • 加载中
  • [1]

    Yi Z Y, Zhao H L, Jiang Y Z, et al. Daily evapotranspiration estimation at the field scale:Using the modified SEBS model and HJ-1 data in a desert-oasis area,northwestern China[J]. Water, 2018, 10(5):640.

    [2]

    张健康, 程彦培, 张发旺. 基于多时相遥感影像的作物种植信息提取[J]. 农业工程学报, 2012, 28(2):134-141.

    [3]

    Zhang J K, Cheng Y P, Zhang F W. Crop planting information extraction based on multi-temporal remote sensing images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(2):134-141.

    [4]

    马丽, 徐新刚, 贾建华, 等. 利用多时相TM影像进行作物分类方法[J]. 农业工程学报, 2008, 24(s2):191-195.

    [5]

    Ma L, Xu X G, Jia J H, et al. Crop classification method using multi-temporal TM images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(s2):191-195.

    [6]

    熊元康, 张清凌. 基于NDVI时间序列影像的天山北坡经济带农业种植结构提取[J]. 干旱区地理, 2019, 42(5):1105-1114.

    [7]

    Xiong Y K, Zhang Q L. Extraction of agricultural planting structure based on NDVI time series images in the economic zone of the northern slope of the Tianshan Mountains[J]. Arid Land Geography, 2019, 42(5):1105-1114.

    [8]

    赵丽花, 李卫国, 杜培军. 基于多时相HJ卫星的冬小麦面积提取[J]. 遥感信息, 2011(2):41-45,50.

    [9]

    Zhao L H, Li W G, Du P J. Winter wheat area extraction based on multi-temporal HJ satellites[J]. Remote Sensing Information, 2011(2):41-45,50.

    [10]

    潘耀忠, 李乐, 张锦水, 等. 基于典型物候特征的MODIS-EVI时间序列数据农作物种植面积提取方法——小区域冬小麦实验研究[J]. 遥感学报, 2011, 15(3):578-594.

    [11]

    Pan Y Z, Li L, Zhang J S, et al. Extraction method of crop planting area from MODIS-EVI time series data based on typical phenological characteristics:Experimental study on small area winter wheat[J]. Journal of Remote Sensing, 2011, 15(3):578-594.

    [12]

    侯学会, 牛铮, 高帅, 等. 基于SPOT-VGT NDVI时间序列的农牧交错带植被物候监测[J]. 农业工程学报, 2013, 29(1):142-150,294.

    [13]

    Hou X H, Niu Z, Gao S, et al. Vegetation phenology monitoring in the agro-pastoral ecotone based on SPOT-VGT NDVI time series[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(1):142-150,294.

    [14]

    Dekker R J. Texture analysis and classification of ERS SAR images for map updating of urban areas in The Netherlands[J]. IEEE Transactions on Geoscience & Remote Sensing, 2003, 41(9):1950-1958.

    [15]

    赵凌君, 秦玉亮, 高贵, 等. 利用GLCM纹理分析的高分辨率SAR图像建筑区检测[J]. 遥感学报, 2009, 13(3):483-490.

    [16]

    Zhao L J, Qin Y L, Gao G, et al. High-resolution SAR image building area detection using GLCM texture analysis[J]. Journal of Remote Sensing, 2009, 13(3):483-490.

    [17]

    黄健熙, 侯矞焯, 等. 基于GF-1 WFV数据的玉米与大豆种植面积提取方法[J]. 农业工程学报, 2017, 33(7):164-170.

    [18]

    Huang J X, Hou J Z, et al. Extraction method of corn and soybean planting area based on GF-1 WFV data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(7):164-170.

    [19]

    王利民, 刘佳, 杨福刚, 等. 基于GF-1卫星遥感数据识别京津冀冬小麦面积[J]. 作物学报, 2018, 44(5):762-773.

    [20]

    Wang L M, Liu J, Yang F G, et al. Recognizing the area of winter wheat in Beijing-Tianjin-Hebei based on GF-1 remote sensing data[J]. Acta Agronomica Sinica, 2018, 44(5):762-773.

    [21]

    刘国栋, 邬明权, 牛铮, 等. 基于GF-1卫星数据的农作物种植面积遥感抽样调查方法[J]. 农业工程学报, 2015, 31(5):160-166.

    [22]

    Liu G D, Wu M Q, Niu Z, et al. Remote sensing sampling survey method of crop planting area based on GF-1 satellite data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5):160-166.

    [23]

    欧阳玲, 毛德华, 王宗明, 等. 基于GF-1与Landsat8 OLI影像的作物种植结构与产量分析[J]. 农业工程学报, 2017, 33(11):147-156,316.

    [24]

    Ou Y L, Mao D H, Wang Z M, et al. Analysis crops planting structure and yield based on GF-1 and Landsat8 OLI images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(11):147-156,316.

    [25]

    程乾, 陈金凤. 基于高分1号杭州湾南岸滨海陆地土地覆盖信息提取方法研究[J]. 自然资源学报, 2015, 30(2):350-360.

    [26]

    Cheng Q, Chen J F. Research on the extraction method of land cover information based on the coastal land on the south coast of Hangzhou Bay of GF-1[J]. Journal of Natural Resources, 2015, 30(2):350-360.

    [27]

    李恒凯, 吴娇, 王秀丽. 基于GF-1影像的东江流域面向对象土地利用分类[J]. 农业工程学报, 2018, 34(10):245-252.

    [28]

    Li H K, Wu J, Wang X L. Object-oriented land use classification of Dongjiang basin based on GF-1 image[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(10):245-252.

    [29]

    王镕. 基于光谱和纹理特征综合的农作物种植结构提取方法研究[D]. 兰州:兰州交通大学, 2019.

    [30]

    Wang R. Research on the extraction method of crop planting structure based on the integration of spectrum and texture features[D]. Lanzhou:Lanzhou Jiaotong University, 2019.

    [31]

    权文婷, 王钊. 冬小麦种植面积遥感提取方法研究[J]. 国土资源遥感, 2013, 25(4):8-15.doi: 10.6046/gtzyyg.2013.04.02.

    [32]

    Quan W T, Wang Z. Research on remote sensing extraction method of winter wheat planting area[J]. Remote Sensing for Land and Resources, 2013, 25(4):8-15.doi: 10.6046/gtzyyg.2013.04.02.

    [33]

    王利民, 刘佳, 姚保民. 基于GF-1影像NDVI年度间相关分析的冬小麦面积变化监测[J]. 农业工程学报, 2018, 34(8):184-191.

    [34]

    Wang L M, Liu J, Yao B M. Monitoring of winter wheat area change based on inter-annual correlation analysis of GF-1 image NDVI[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(8):184-191.

    [35]

    杨闫君, 占玉林, 田庆久. 基于GF-1/WFVNDVI时间序列数据的作物分类[J]. 农业工程学报, 2015, 31(24):155-161.

    [36]

    Yang Y J, Zhan Y L, Tian Q J. Crop classification based on GF-1/WFVNDVI time series data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(24):155-161.

    [37]

    Peleg S. Multiple Resolution Texture Analysis and Classification[J]. IEEE Trans.PAMI, 2009, 6(4):518-523.

    [38]

    郑淑丹, 郑江华, 石明辉. 基于分形和灰度共生矩阵纹理特征的种植型药用植物遥感分类[J]. 遥感学报, 2014, 18(4):868-886.

    [39]

    Zheng S D, Zheng J H, Shi M H. Remote sensing classification of planted medicinal plants based on fractal and gray-level symbiotic matrix texture features[J]. Journal of Remote Sensing, 2014, 18(4):868-886.

    [40]

    宋荣杰, 宁纪锋, 常庆瑞. 基于小波纹理和随机森林的猕猴桃果园遥感提取[J]. 农业机械学报, 2018, 49(4):222-231.

    [41]

    Song R J, Ning J F, Chang Q R. Remote sensing extraction of kiwifruit orchard based on wavelet texture and random forest[J]. Transactions of the Chinese Society of Agricultural Machinery, 2018, 49(4):222-231.

    [42]

    张超, 金虹杉, 刘哲. 基于GF遥感数据纹理分析识别制种玉米[J]. 农业工程学报, 2016, 32(21):183-188.

    [43]

    Zhang C, Jin H S, Liu Z. Recognition of seed production corn based on texture analysis of GF remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(21):183-188.

    [44]

    王镕, 赵红莉, 郝震, 等. 一种农作物种植结构月尺度动态提取方法:中国, CN110321861A[P]. 2019-10-11.

    [45]

    Wang R, Zhao H L, Hao Z, et al. A dynamic extraction method of crop planting structure on a monthly scale:China, CN110321861A[P]. 2019-10-11.

    [46]

    王镕, 赵红莉, 郝震, 等. 纹理特征优选的农作物种植结构月尺度动态提取方法:中国, CN110909652A[P]. 2020-03-24.

    [47]

    Wang R, Zhao H L, Hao Z, et al. The monthly-scale dynamic extraction method of crop planting structure for texture feature optimization:China,CN110909652A[P]. 2020-03-24.

    [48]

    贾坤, 李强子. 农作物遥感分类特征变量选择研究现状与展望[J]. 资源科学, 2013, 35(12):2507-2516.

    [49]

    Jia K, Li Q Z. Current status and prospects of research on selection of feature variables for crop remote sensing classification[J]. Resources Science, 2013, 35(12):2507-2516.

    [50]

    王娜, 李强子, 杜鑫. 单变量特征选择的苏北地区主要农作物遥感识别[J]. 遥感学报, 2017, 21(4):519-530.

    [51]

    Wang N, Li Q Z, Du X. Remote sensing identification of main crops in northern Jiangsu based on univariate feature selection[J]. Journal of Remote Sensing, 2017, 21(4):519-530.

    [52]

    刘晓双, 龚直文, 吴见. 基于多特征的高光谱遥感土地利用信息提取[J]. 南京林业大学学报(自然科学版), 2018, 42(4):141-147.

    [53]

    Liu X S, Gong Z W, Wu J. Multi-feature-based hyperspectral remote sensing land use information extraction[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2018, 42(4):141-147.

    [54]

    单治彬, 孔金玲. 面向对象的特色农作物种植遥感调查方法研究[J]. 地球信息科学学报, 2018, 20(10):1509-1519.

    [55]

    Shan Z B, Kong J L. Research on object-oriented remote sensing survey method of characteristic crop cultivation[J]. Journal of Geo-Information Science, 2018, 20(10):1509-1519.

  • 加载中
计量
  • 文章访问数:  710
  • PDF下载数:  117
  • 施引文献:  0
出版历程
收稿日期:  2020-10-21
刊出日期:  2021-09-15

目录