中国自然资源航空物探遥感中心主办
地质出版社出版

基于多尺度超像素的高光谱图像分类研究

王华, 李卫卫, 李志刚, 陈学业, 孙乐. 2021. 基于多尺度超像素的高光谱图像分类研究. 自然资源遥感, 33(3): 63-71. doi: 10.6046/zrzyyg.2020344
引用本文: 王华, 李卫卫, 李志刚, 陈学业, 孙乐. 2021. 基于多尺度超像素的高光谱图像分类研究. 自然资源遥感, 33(3): 63-71. doi: 10.6046/zrzyyg.2020344
WANG Hua, LI Weiwei, LI Zhigang, CHEN Xueye, SUN Le, . 2021. Hyperspectral image classification based on multiscale superpixels. Remote Sensing for Natural Resources, 33(3): 63-71. doi: 10.6046/zrzyyg.2020344
Citation: WANG Hua, LI Weiwei, LI Zhigang, CHEN Xueye, SUN Le, . 2021. Hyperspectral image classification based on multiscale superpixels. Remote Sensing for Natural Resources, 33(3): 63-71. doi: 10.6046/zrzyyg.2020344

基于多尺度超像素的高光谱图像分类研究

  • 基金项目:

    国家自然科学基金项目“领域知识驱动的土地利用空间优化配置与多情景模拟”(41771438)

    自然资源部城市土地资源监测与仿真重点实验室开放基金资助项目“融合多源数据的多粒度土地利用现状时空建模和系统研发”(KF-2019-04-038)

    数字制图与国土信息应用工程国家测绘地理信息局重点实验室开放研究基金资助项目“基于深度学习的城市地价评估样本点选择研究”(ZRZYBWD201911)

详细信息
    作者简介: 王 华(1986-),男,博士,副教授,主要从事空间数据挖掘、空间决策支持技术研究。Email:whuwanghua@163.com。
  • 中图分类号: TP75

Hyperspectral image classification based on multiscale superpixels

  • 随着遥感技术的快速发展,高光谱遥感影像的分类方法研究受到普遍关注。现有高光谱遥感影像分类研究采用单一尺度下的超像素方法进行图像分割处理,无法确定最佳超像素个数,较易忽视图像细节信息,且单一核矩阵无法表征多特征信息导致分类精度降低。因此,本研究拟在多尺度下采用超像素分割方法对高光谱影像的第一主成分分量进行多尺度超像素分割处理,通过权值耦合多尺度空间光谱核与原始空间光谱核形成合成核来进行高光谱影像分类,并以Washington DC Mall高光谱影像为实验数据对本文方法进行测试与分析。实验结果显示,相较于对比方法,这一方法的有效分类精度最高提升6.93个百分点。结果证明该方法可以有效解决图像光谱无法自适应、光谱信息获取不全面的问题,能够显著提升高光谱影像分类精度。
  • 加载中
  • [1]

    Goetz A F H. Three decades of hyperspectral remote sensing of the Earth:A personal view[J]. Remote Sensing of Environment, 2009, 113(s1):5-16.

    [2]

    Uwe K, Andreas B, Udo S. Fusion trees for fast and accurate classification of hyperspectral data with ensembles of γ -divergence-based RBF networks[J]. Neural Computing and Applications, 2015, 26(2):253-262.

    [3]

    胥海威, 杨敏华, 韩瑞梅, 等. 用随机决策树群算法进行高光谱遥感影像分类[J]. 应用科学学报, 2011, 29(6):598-604.

    [4]

    Xu H W, Yang M H, Han R M, et al. Classification of hyperspectral remote sensing images using stochastic decision tree group algorithm[J]. Journal of Applied Sciences, 2011, 29(6):598-604.

    [5]

    Guo Y H, Yin X J, Zhao X C, et al. Hyperspectral image classification with SVM and guided filter[J]. Eurasip Journal on Wireless Communications and Networking, 2019(1):1-9.

    [6]

    廖建尚, 王立国. 面向空间自相关信息的高光谱图像分类方法[J]. 农业机械学报, 2018, 49(6):215-224.

    [7]

    Liao J S, Wang L G. Hyperspectral image classification method for spatial autocorrelation information[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(6):215-224.

    [8]

    Kavita B, Vijaya M. Evaluation of deep learning CNN model for land use land cover classification and crop identification using hyperspectral remote sensing images[J]. Journal of the Indian Society of Remote Sensing, 2019, 47(11):1949-1958.

    [9]

    朱瑞飞, 马经宇, 李竺强, 等. 多层感知卷积神经网络的国产多光谱影像分类[J]. 光学学报, 2020, 40(15):1-21.

    [10]

    Zhu R F, Ma J Y, Li Z Q, et al. Classification of domestic multispectral images based on multilayer perceptual convolutional neural network[J]. Acta Optica Sinica, 2020, 40(15):1-21.

    [11]

    Bera, Shrivastava. Analysis of various optimizers on deep convolutional neural network model in the application of hyperspectral remote sensing image classification[J]. International Journal of Remote Sensing, 2020, 41(7):2664-2683.

    [12]

    Mohamad J, Mauro D M, Pierre C. Hyperspectral image classification based on mathematical morphology and tensor decomposit-ion[J]. Mathematical Morphology-Theory and Applications, 2020, 4(1):1-30.

    [13]

    Paulina, Koziol, Magda, et al. Comparison of spectral and spatial denoising techniques in the context of High Definition FT-IR imaging hyperspectral data[J]. Scientific Reports, 2018, 8(11):1444-1463.

    [14]

    杜培军, 夏俊士, 薛朝辉, 等. 高光谱遥感影像分类研究进展[J]. 遥感学报, 2020, 20(2):236-256.

    [15]

    Du P J, Xia J S, Xue Z H, et al. Review of hyperspectral remote sensing image classification[J]. Journal of Remote Sensing, 2020, 20(2):236-256.

    [16]

    Wang P Y, Zhu H Q, Chen N. Umms:Efficient superpixel segmentation driven by a mixture of spatially constrained uniform distribution[J]. Ieice Transactions on Information and Systems, 2020, 103(1):181-185.

    [17]

    Sanghyun P. Crab region extraction method from tidal flat images using superpixels[J]. Journal of Advanced Information Technology and Convergence, 2019, 9(2):29-39.

    [18]

    Vitaliy K, Grzegorz M. Persistence-based resolution-independent meshes of superpixels[J]. Pattern Recognition Letters, 2020, 131(3):300-306.

    [19]

    Tang K W, Su Z X, Jiang W, et al. Superpixels for large dataset subspace clustering[J]. Neural Computing and Applications, 2019, 31(12):8727-8736.

    [20]

    Song D M, Tan X, Wang B, et al. Integration of super-pixel segmentation and deep-learning methods for evaluating earthquake-damaged buildings using single-phase remote sensing imagery[J]. International Journal of Remote Sensing, 2020, 41(3):1040-1066.

    [21]

    Amin B, Riaz M M, Ghafoor A. Automatic image matting of synthetic aperture radar target chips[J]. Radio Engineering, 2020, 29(1):228-234.

    [22]

    Yuan X H, Guo S J, Li C W, et al. Near infrared star centroid detection by area analysis of multi-scale super pixel saliency fusion map[J]. Tsinghua Science and Technology, 2019, 24(3):291-300.

    [23]

    陈允杰, 马辰阳, 孙乐, 等. 基于边缘修正的高光谱图像超像素空谱核分类方法[J]. 电子学报, 2019, 47(1):73-81.

    [24]

    Chen Y J, Ma C Y, Sun L. Edge-modified superpixel based spectral-spatial kernel method for hyperspectral image classification[J]. Acta Electronica Sinica, 2019, 47(1):73-81.

    [25]

    刘忠林, 吴一全, 邹宇. 多尺度红外超像素图像模型的小目标检测[J]. 中国图象图形学报, 2019, 24(12):2159-2173.

    [26]

    Liu Z L, Wu Y Q, Zou Y. Multiscale infrared superpixel-image model for small-target detection[J]. Journal of Image and Graphics, 2019, 24(12):2159-2173.

    [27]

    Kang X D, Duan P H, Li S T. Hyperspectral image visualization with edge-preserving filtering and principal component analysis[J]. Information Fusion, 2020, 57(5):130-143.

    [28]

    Shi C, Pun C M. Multiscale superpixel-based hyperspectral image classification using recurrent neural networks with stacked autoencoders[J]. IEEE Transactions on Multimedia, 2020, 22(2):487-501.

    [29]

    Sun L, Ma C, Chen Y, et al. Adjacent superpixel-based multiscale spatial-spectral kernel for hyperspectral classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2019, 12(6):1909-1919.

    [30]

    刘纯, 洪亮, 陈杰, 等. 融合像素—多尺度区域特征的高分辨率遥感影像分类算法[J]. 遥感学报, 2015, 19(2):228-239.

    [31]

    Liu C, Hong L, Chen J, et al. Fusion of pixel-based and multi-scale region-based features for the classification of high-resolution remote sensing image[J]. Journal of Remote Sensing, 2015, 19(2):228-239.

    [32]

    Ramzan M, Abid A, Khan H, et al. A review on state-of-the-art violence detection techniques[J]. IEEE Access, 2019, 7(9):107560-107575.

    [33]

    Chang C C, Huang H T. Automatic tuning of the RBF kernel parameter for batch-mode active learning algorithms:A scalable framework[J]. IEEE Transactions on Cybernetics, 2019, 49(12):4460-4472.

    [34]

    尚坤, 李培军, 程涛. 基于合成核支持向量机的高光谱土地覆盖分类[J]. 北京大学学报:自然科学版, 2011, 47(1):109-114.

    [35]

    Shang K, Li P J, Cheng T. Land cover classification of hyperspectral data using composite kernel support vector machines[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2011, 47(1):109-114.

    [36]

    He J, Xu J L. Ultra-short-term wind speed forecasting based on support vector machine with combined kernel function and similar data[J]. Eurasip Journal on Wireless Communications and Networking, 2019(1):1-7.

    [37]

    Akbari D, Moradizadeh M, Akbari M. Spectral-spatial classification of hyperspectral imagery using neural network algorithm and hierarchical segmentation[J]. The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2019, XLII-2(W12):1-5.

  • 加载中
计量
  • 文章访问数:  1285
  • PDF下载数:  100
  • 施引文献:  0
出版历程
收稿日期:  2020-11-02
刊出日期:  2021-09-15

目录