中国自然资源航空物探遥感中心主办
地质出版社出版

基于GF-3全极化SAR数据的滨海湿地信息提取方法

何陈临秋, 程博, 陈金奋, 张晓平. 2021. 基于GF-3全极化SAR数据的滨海湿地信息提取方法. 自然资源遥感, 33(4): 105-110. doi: 10.6046/zrzyyg.2020353
引用本文: 何陈临秋, 程博, 陈金奋, 张晓平. 2021. 基于GF-3全极化SAR数据的滨海湿地信息提取方法. 自然资源遥感, 33(4): 105-110. doi: 10.6046/zrzyyg.2020353
HE Chenlinqiu, CHENG Bo, CHEN Jinfen, ZHANG Xiaoping, . 2021. Information extraction methods of coastal wetland based on GF-3 fully polarimetric SAR data. Remote Sensing for Natural Resources, 33(4): 105-110. doi: 10.6046/zrzyyg.2020353
Citation: HE Chenlinqiu, CHENG Bo, CHEN Jinfen, ZHANG Xiaoping, . 2021. Information extraction methods of coastal wetland based on GF-3 fully polarimetric SAR data. Remote Sensing for Natural Resources, 33(4): 105-110. doi: 10.6046/zrzyyg.2020353

基于GF-3全极化SAR数据的滨海湿地信息提取方法

  • 基金项目:

    国家自然科学基金重点项目“基于认知计算的遥感卫星下行数据即时服务的理论与方法研究”(61731022)

详细信息
    作者简介: 何陈临秋(1993-),女,硕士研究生,主要从事雷达遥感湿地信息提取方法研究。Email:heclq@radi.ac.cn。
  • 中图分类号: TP751

Information extraction methods of coastal wetland based on GF-3 fully polarimetric SAR data

  • 滨海湿地信息提取对于准确掌握滨海湿地分布现状、保护与管理滨海湿地珍稀资源具有重要意义。通过可分性指数筛选极化分解特征并利用随机森林法对全极化SAR影像进行分类,以提高滨海湿地保护区地物信息提取精度。选取辽宁省辽河口湿地自然保护区作为研究区域,基于国产高分三号全极化雷达影像,采用5种极化目标分解方法提取极化特征,利用可分性指数优化特征选择,最后利用随机森林法进行辽河口自然保护区地物分类及精度评价。实验结果表明,基于优化选择的极化特征地物分类精度可达75.47%; 优化选择后的极化特征参数能够有效避免信息冗余,提高滨海湿地保护区地物信息提取精度。
  • 加载中
  • [1]

    刘润红, 梁士楚, 赵红艳, 等. 中国滨海湿地遥感研究进展[J]. 遥感技术与应用, 2017,32(6):998-1011.

    [2]

    Liu R H, Liang S C, Zhao H Y, et al. Progress of Chinese coastal wetland based on remote sensing[J]. Remote Sensing Technology and Application, 2017,32(6):998-1011.

    [3]

    Schmitt A, Brisco B, Kaya S, et al. Polarimetric change detection for wetlands[C]//Neale C,Cosh M.Remote Sensing and Hydrology.Oxford:IAHS Publication, 2012:375-379.

    [4]

    Touzi R, Deschamps A, Rother G. Wetland characterization using polarimetric Radarsat-2 capability[J]. Canadian Journal of Remote Sensing, 2007,33(s1):56-67.

    [5]

    Touzi R, Deschamps A, Rother G. Phase of target scattering for wetland characterization using polarimetric C-band SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009,47(9):3241-3261.

    [6]

    陈媛媛, 何秀凤, 王静. 基于SVM的极化SAR沿海滩涂分类[J]. 地理空间信息, 2015,13(6):150-153,16.

    [7]

    Chen Y Y, He X F, Wang J. Polarimetric SAR classification of coastal wetland based on SVM[J]. Geospatial Information, 2015,13(6):150-153,16.

    [8]

    亓宁轩, 罗征宇, 李彬. 基于多波段全极化SAR影像的湿地分类[J]. 测绘与空间地理信息, 2017,40(1):171-174.

    [9]

    Qi N X, Luo Z Y, Li B. Multi-band polarization SAR wetlands classification[J]. Geomatics and Spatial Information Technology, 2017,40(1):171-174.

    [10]

    徐梦竹, 徐佳, 邓鸿儒, 等. 基于全极化SAR影像的海岛地物分类[J]. 遥感技术与应用, 2019,34(3):647-654.

    [11]

    Xu M Z, Xu J, Deng H R, et al. Land-use classification of islands based on fully polarimetric SAR data[J]. Remote Sensing Technology and Application, 2019,34(3):647-654.

    [12]

    王超, 张红, 陈曦, 等. 全极化合成孔径雷达图像处理[M]. 北京: 科学出版社, 2008:44-106.

    [13]

    Wang C, Zhang H, Chen X, et al. Processing of fully polarimetric synthetic aperture Radar imagery[M]. Beijing: Science Press, 2008:44-106.

    [14]

    国家林业局《湿地公约》履约办公室. 湿地公约履约指南[M]. 北京: 中国林业出版社, 2001.

    [15]

    Performance Office of China Convention on Wetlands. Guide on implementing ramsar convention in China[M]. Beijing: China Forestry Publishing House, 2001.

    [16]

    牟晓杰, 刘兴土, 阎百兴, 等. 中国滨海湿地分类系统[J]. 湿地科学, 2015,13(1):19-26.

    [17]

    Mou X J, Liu X T, Yan B X, et al. Classification system of coastal wetlands in China[J]. Wetland Science, 2015,13(1):19-26.

    [18]

    Huynen J R. Phenomenological theory of Radar targets[J]. Electromagnetic Scattering, 1978:653-712.

    [19]

    宋瑞超, 赵国忱, 卜丽静. 基于多极化特征和纹理特征的PolSAR图像分类[J]. 城市勘测, 2019(3):121-126,130.

    [20]

    Song R C, Zhao G C, Bu L J. PolSAR images classification based on multi-polarization feature and texture feature[J]. Urban Geotechnical Investigation and Surveying, 2019(3):121-126,130.

    [21]

    Cloude S R. Target decomposition theorems in Radar scattering[J]. Electronics Letters, 1985,21(1):22-24.

    [22]

    Cloude S R, Pottier E. A review of target decomposition theorems in Radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996,34(2):498-518.

    [23]

    Cloude S R, Pottier E. An entropy based classification scheme for land applications of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997,35(1):68-78.

    [24]

    Cloude S R, Papathanassiou K P. Polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998,36(5):1551-1565.

    [25]

    Freeman A, Durden S L. A three-component scattering model for polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998,36(3):963-973.

    [26]

    赵泉华, 胡广臣, 李晓丽, 等. 基于全极化SAR影像的双台河口湿地分类及其变化分析[J]. 环境科学研究, 2019,32(2):309-316.

    [27]

    Zhao Q H, Hu G C, Li X L, et al. Full-polSAR image based on wetland classification and change analysis of the Shuangtai estuary wetland[J]. Research of Environmental Sciences, 2019,32(2):309-316.

    [28]

    万剑华, 张乃心, 任广波, 等. 典型滨海湿地植被全极化SAR显著性特征分析与融合分类[J]. 测绘地理信息, 2018,43(5):4-8.

    [29]

    Wan J H, Zhang N X, Ren G B, et al. Analysis and classification of fully-polarization SAR characteristics of typical vegetation in coastal wetland[J]. Journal of Geomatics, 2018,43(5):4-8.

    [30]

    李平, 徐新, 董浩, 等. 利用可分性指数的极化SAR图像特征选择与多层SVM分类[J]. 计算机应用, 2018,38(1):132-136,170.

    [31]

    Li P, Xu X, Dong H, et al. Polarimetric SAR image feature selection and multi-layer SVM classification using divisibility index[J]. Journal of Computer Applications, 2018,38(1):132-136,170.

    [32]

    田旸. 基于Radarsat-2时间序列的湿地水文情势遥感监测与湿地分类[D]. 哈尔滨:哈尔滨师范大学, 2017.

    [33]

    Tian Y. Monitoring hydrological regime and classifying the wetland based on time series Radarsat-2 images[D]. Harbin:Harbin Normal University, 2017.

    [34]

    潘庆榜. 兼容光学、雷达与地形辅助数据的森林湿地遥感分类[D]. 哈尔滨:哈尔滨师范大学, 2017.

    [35]

    Pan Q B. Remote sensing classification in forest wetland compatible with the optical,Radar and terrain aided data[D]. Harbin:Harbin Normal University, 2017.

    [36]

    黄瑾. 基于多波段多极化SAR数据的黄河口湿地分类研究[D]. 青岛:中国石油大学, 2011.

    [37]

    Huang J. Classification of the Yellow River estuary wetland based on multiband and multi-polarization SAR data[D]. Qingdao:China University of Petroleum, 2011.

  • 加载中
计量
  • 文章访问数:  1009
  • PDF下载数:  112
  • 施引文献:  0
出版历程
收稿日期:  2020-11-09
刊出日期:  2021-12-15

目录