A SAR image classification method based on an improved OGMRF-RC model
-
摘要: 合成孔径雷达(synthetic aperture Radar, SAR)图像分类是遥感应用中的关键技术之一。针对对象高斯-马尔可夫随机场(object-based Gaussian-Markov random field,OGMRF)模型中区域类别标签对分类精度影响的问题,提出了区域类别模糊概率(regional category fuzzy probability, RCFP)标签场方法,使临界对象具有多种类别划分的可能性,避免唯一标签导致的错分类现象。该方法综合考虑区域特征与邻域特征,利用区域边缘信息和后验概率获得RCFP,并将其纳入特征场参数求解过程中,使特征场参数更加接近真实情况,从而提高SAR图像分类精度。以河南省开封市东部约1 400 km2的区域为研究区,采用Sentinel-1卫星SAR图像开展农田、建筑、水域3类地物的分类验证实验,与K-means,FCM,马尔可夫随机场和具有区域系数的OGMRF等方法相比较,所提出方法的总体分类精度达到94.16%,Kappa系数为0.895 7,在5种方法中效果最好。
-
关键词:
- SAR图像分类 /
- 马尔可夫随机场 /
- 特征场 /
- 区域类别模糊概率 /
- Sentinel-1
Abstract: The classification of synthetic aperture Radar (SAR) images is one of the key technologies in the field of remote sensing applications. To address the problem that regional class labels affect the classification accuracy in the object-based Markov random field (OMRF) model, this paper proposes the concept of regional category fuzzy probability (RCFP) label field, which can effectively avoid the misclassification caused by wrong class labels by fully considering the possible categories of a single object. The RCFP of every region can be obtained using the regional edge information and posterior probability according to the features of the region and its adjacent regions. Then it is included in the calculation of feature field parameters to make the feature field parameters highly close to the real conditions of objects. The study area is located in the eastern part of Kaifeng City, Henan Province, covering an area of about 1 400 km2. Sentinel-1 SAR images were used for the classification experiment of farmlands, buildings, and water in the study area, and the performance of the improved method in this study was compared with that of the method of K-means, fuzzy C-means (FCM), MRF, and OGMRF-RC. The experimental results show that the overall accuracy (OA) and the Kappa coefficient of the proposed method are 94.16% and 0.8957 respectively, which are higher than those of other methods. -
-
[1] 范文兵, 孙志远. 基于小波域广义高斯分布的SAR图像分割算法[J]. 计算机工程与应用, 2020,56(5):222-226.
[2] Fan W B, Sun Z Y. SAR image segmentation algorithm based on generalized gauss distribution in wavelet domain[J]. Computer Engineering and Applications, 2020,56(5):222-226.
[3] 来全, 张继权, 席宇阳, 等. 基于三聚类中心K-Means算法的SAR船只检测方法[J]. 东北师大学报(自然科学版), 2017,49(3):61-67.
[4] Lai Q, Zhang J Q, Xi Y Y, et al. A ship detection method for SAR imagery based on three-centroid K-Means clustering algorithm[J]. Journal of Northeast Normal University(Nature Science Edition), 2017,49(3):61-67.
[5] 韩子硕, 王春平. 基于改进FCM与MRF的SAR图像分割[J]. 系统工程与电子技术, 2019,41(8):1726-1734.
[6] Hang Z S, Wang C P. SAR image segmentation based on improved FCM and MRF[J]. Systems Engineering and Electronics, 2019,41(8):1726-1734.
[7] 国贤玉, 李坤, 王志勇, 等. 基于SVM+SFS策略的多时相紧致极化SAR水稻精细分类[J]. 国土资源遥感, 2018,30(4):20-27.doi: 10.6046/gtzyyg.2018.04.04.
[8] Guo X Y, Li K, Wang Z Y, et al. Fine classification of rice with multi-temporal compact polarimetric SAR based on SVM+SFS strategy[J]. Remote Sensing for Land and Resources, 2018,30(4):20-27.doi: 10.6046/gtzyyg.2018.04.04.
[9] Voisin A, Krylov V A, Moser G, et al. Classification of very-high resolution SAR images of urban areas using copulas and texture in a hierarchical markov random field model[J]. IEEE Geoscience and Remote Sensing Letters, 2013,10(1):96-100.
[10] Delia C, Ruscino S, Abbate M, et al. SAR image classification through information-theoretic textural features,MRF segmentation,and object-oriented learning vector quantization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014,7(4):1116-1126.
[11] Shen Y, Chen J Y, Xiao L, et al. A bilevel contextual MRF model for supervised classification of high spatial resolution remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019,12(12):360-5372.
[12] Bi H X, Xu L, Cao X, et al. Polarimetric SAR image semantic segmentation with 3D discrete wavelet transform and Markov random field[J]. IEEE Transactions on Image Processing, 2020,29:6601-6614.
[13] Jiang X F, Zhang Y, Li Y, et al. Hyperspectral image classification with transfer learning and Markov random fields[J]. IEEE Geoscience and Remote Sensing Letters, 2020,17(3):544-548.
[14] Lee S H. Hierarchical classification of land-cover types using RAG-based merging[C]//2007 IEEE International Geoscience and Remote Sensing Symposium, 2007:2060-2062.
[15] Chen X H, Zheng C, Yao H T, et al. Image segmentation using a unified Markov random field model[J]. The Institution of Engineering and Technology, 2017,11(10):860-869.
[16] Zheng C, Yao H T. Segmentation for remote-sensing imagery using the object-based Gaussian-Markov random field model with region coefficients[J]. International Journal of Remote Sensing, 2019,40(11):4441-4472.
[17] Xu X F, Zou B, Zhang L M. PolSAR image classification based on object-based Markov random field with polarimetric auxiliary label field[J]. IEEE Geoscience and Remote Sensing Letters, 2020,17(9):1558-1562.
[18] 朱阿兴, 闾国年, 周成虎, 等. 地理相似性:地理学的第三定律?[J]. 地球信息科学学报, 2020,22(4):673-679
[19] Zhu A X, Lv G N, Zhou C H, et al. Geographic similarity:Third law of geography?[J]. Journal of Geo-information Science, 2020,22(4):673-679.
[20] 李智, 曲长文, 周强, 等. 基于SLIC超像素分割的SAR图像海陆分割算法[J]. 雷达科学与技术, 2017,15(4):354-358
[21] Li Z, Qu C W, Zhou Q, et al. A sea-land segmentation algorithm of SAR image based on the SLIC superpixel division[J]. Radar Science and Technology, 2017,15(4):354-358.
-
计量
- 文章访问数: 800
- PDF下载数: 75
- 施引文献: 0