中国自然资源航空物探遥感中心主办
地质出版社出版

煤炭开采背景下的伊金霍洛旗土地利用变化强度分析

桑潇, 张成业, 李军, 朱守杰, 邢江河, 王金阳, 王兴娟, 李佳瑶, 杨颖. 2021. 煤炭开采背景下的伊金霍洛旗土地利用变化强度分析. 自然资源遥感, 33(3): 148-155. doi: 10.6046/zrzyyg.2020358
引用本文: 桑潇, 张成业, 李军, 朱守杰, 邢江河, 王金阳, 王兴娟, 李佳瑶, 杨颖. 2021. 煤炭开采背景下的伊金霍洛旗土地利用变化强度分析. 自然资源遥感, 33(3): 148-155. doi: 10.6046/zrzyyg.2020358
SANG Xiao, ZHANG Chengye, LI Jun, ZHU Shoujie, XING Jianghe, WANG Jinyang, WANG Xingjuan, LI Jiayao, YANG Ying, . 2021. Application of intensity analysis theory in the land use change in Yijin Holo Banner under the background of coal mining. Remote Sensing for Natural Resources, 33(3): 148-155. doi: 10.6046/zrzyyg.2020358
Citation: SANG Xiao, ZHANG Chengye, LI Jun, ZHU Shoujie, XING Jianghe, WANG Jinyang, WANG Xingjuan, LI Jiayao, YANG Ying, . 2021. Application of intensity analysis theory in the land use change in Yijin Holo Banner under the background of coal mining. Remote Sensing for Natural Resources, 33(3): 148-155. doi: 10.6046/zrzyyg.2020358

煤炭开采背景下的伊金霍洛旗土地利用变化强度分析

  • 基金项目:

    中国矿业大学(北京)越崎青年学者资助计划

    中央高校基本科研业务费项目“露天矿区生态环境协同演变遥感大数据监测与分析”(2021YQDC02)

    大学生创新训练项目“基于多源遥感数据的矿产资源开发监测与影响评价”(C202002179)

详细信息
    作者简介: 桑 潇(1993-),女,博士研究生,主要从事自然资源监测与评价研究。Email:sangxiao@student.cumtb.edu.cn。
  • 中图分类号: TP79

Application of intensity analysis theory in the land use change in Yijin Holo Banner under the background of coal mining

  • 为探索矿区煤炭开采活动在不同阶段对各类型土地利用类型的影响差异和特征,以我国重要产煤区伊金霍洛旗为研究区,以1990—2019年近30 a间的多期Landsat遥感影像为主要数据源,在Google Earth Engine平台上采用随机森林分类法提取土地利用分布信息,结合煤炭开采统计数据,利用强度分析理论对煤炭开采3个阶段的矿区土地利用变化特征进行分析。结果表明: ①强度变化理论可对土地利用变化从间隔层次、类别层次、转化层次进行全面分析,同时更加系统地展示出研究区的土地利用变化特征及人类活动产生的影响,对深入理解土地利用变化过程具有重要意义; ②煤炭开采对不同地类的影响具有差异,其主要影响地类为植被、水域、裸地; ③煤炭开采在不同阶段对各类用地的影响作用具有差异,在煤炭开采起步阶段,对各种类型用地影响较小; 在煤炭开采高速发展阶段,煤炭开采对各类型用地的影响加大,主要影响矿区及周边植被、裸地和水域; 在煤炭开采平稳发展阶段,对各地类的影响强度减小。研究结果可服务于制定在不同阶段对不同地类的精准防护实施方案,为矿区生态环境的保护提供科学依据。
  • 加载中
  • [1]

    Liu J, Yang T, Wang L, et al. Research progress in coal and gas co-mining modes in China[J]. Energy Science and Engineering, 2020, 8:3365-3376.

    [2]

    Wang G F, Xu Y X, Ren H W. Intelligent and ecological coal mining as well as clean utilization technology in China:Review and prospects[J]. International Journal of Mining Science and Technology, 2019, 29:161-169.

    [3]

    Zhang M, Wang J M, Li S J, et al. Dynamic changes in landscape pattern in a large-scale opencast coal mine area from 1986 to 2015:A complex network approach[J]. Catena, 2020(194):104738.

    [4]

    Gorokhovich Y, Reid M, Mignone E, et al. Prioritizing abandoned coal mine reclamation projects within the contiguous United States using geographic information system extrapolation[J]. Environmental Management, 2003, 32(4):527-534.

    [5]

    Qian D, Yan C, Xing Z, et al. Monitoring coal mine changes and their impact on landscape patterns in an alpine region:A case study of the Muli coal mine in the Qinghai-Tibet Plateau[J]. Environmental Monitoring and Assessment, 2017, 189(11),559-570.

    [6]

    战甜. 霍林河南露天矿土地利用与景观格局变化研究[D]. 呼和浩特:内蒙古农业大学, 2017.

    [7]

    Zhan T. Study on land use and landscape pattern change in Huolinhenan open-pit coal mine[D]. Hohhot:Inner Mongolia Agricultural University, 2017.

    [8]

    Feng Y, Wang J, Bai Z, et al. Effects of surface coal mining and land reclamation on soil properties:A review[J]. Earth-Science Reviews, 2019(191):12-25.

    [9]

    Li J, Pei Y Q, Zhao S H, et al. A review of remote sensing for environmental monitoring in China[J]. Remote Sensing, 2020, 12(7):1130.

    [10]

    Zhang M, Wang J M, Feng Y. Temporal and spatial change of land use in a large-scale opencast coal mine area:A complex network approach[J]. Land Use Policy, 2019, 86:375-386.

    [11]

    Rendenieks Z, Nita M D, Nikodemus O, et al. Half a century of forest cover change along the Latvian-Russian border captured by object-based image analysis of Corona and Landsat TM/OLI data[J]. Remote Sensing of Environment, 2020, 249:112010.

    [12]

    Negri R G, da Silva E A, Casaca W. Inducing contextual classifications with kernel functions into support vector machines[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(6):962-966.

    [13]

    Berhane T M, Lane C R, Wu Q S, et al. Decision-tree,rule-based,and random forest classification of high-resolution multispectral imagery for wetland mapping and inventory[J]. Remote Sensing, 2018, 10(4):580.

    [14]

    Garosi Y, Sheklabadi M, Pourghasemi H R, et al. Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping[J]. Geoderma, 2018, 330:65-78.

    [15]

    Alimjan G, Sun T L, Liang Y, et al. A new technique for remote sensing image classification based on combinatorial algorithm of SVM and KNN[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2018, 32(7):1859012.

    [16]

    Bazi Y, Melgani F. Convolutional SVM networks for object detection in UAV imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6):3107-3118.

    [17]

    桑潇, 国巧真, 潘应阳, 等. 基于TM和OLI数据山西省潞城市土地利用动态变化分析与预测[J]. 国土资源遥感, 2018, 30(2):125-131.doi: 10.6046/gtzyyg.2018.02.17.

    [18]

    Sang X, Guo Q Z, Pan Y Y, et al. Research on land use dynamic change and prediction in Lucheng City of Shanxi Province based on TM and OLI[J]. Remote Sensing for Land and Resources, 2018, 30(2):125-131.doi: 10.6046/gtzyyg.2018.02.17.

    [19]

    Aldwaik S Z Pontius R G J. Intensity analysis to unify measurements of size and stationarity of land changes by interval,category,and transition[J]. Landscape Urban Planning, 2012(106):103-114.

    [20]

    孙云华, 郭涛, 崔希民. 昆明市土地利用变化的强度分析与稳定性研究[J]. 地理科学进展, 2016, 35(2):245-254.

    [21]

    Sun Y H, Guo T, Cui X M. Intensity analysis and stationarity of land use change in Kunming City[J]. Progress in Geography, 2016, 35(2):245-254.

    [22]

    Sang X, Guo Q Z, Wu X X, et al. Intensity and stationarity analysis of land use change based on CART algorithm[J]. Scientific Reports, 2019(9):12279.

    [23]

    邵亚奎, 王蕾, 朱长明, 等. GEE云平台支持下的西天山森林遥感监测与时空变化分析[J]. 测绘通报, 2020(8):13-17.

    [24]

    Shao Y K, Wang L, Zhu C M, et al. Forest survey and spatio-temporal analysis in West Tianshan mountains supported by Google Earth Engine[J]. Bulletin of Surveying and Mapping, 2020(8):13-17.

    [25]

    Gong P, Li X C, Wang J, et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018[J]. Remote Sensing of Environment, 2020, 236:111510.

    [26]

    Parente L, Mesquita V, Miziara F, et al. Assessing the pasturelands and livestock dynamics in Brazil,from 1985 to 2017:A novel approach based on high spatial resolution imagery and Google Earth Engine cloud computing[J]. Remote Sensing of Environment, 2019(232):111301.

    [27]

    Phan T N, Kuch V, Lehnert L W. Land cover classification using Google Earth Engine and random forest classifier:The role of image composition[J]. Remote Sensing, 2020, 12(15):2411.

    [28]

    Tassi A, Vizzari M. Object-oriented LULC classification in Google Earth Engine combining SNIC,GLCM,and machine learning algorithms[J]. Remote Sensing, 2020, 12(22):3776.

    [29]

    Lin L L, Hao Z B, Post C J, et al. Monitoring land cover change on a rapidly urbanizing island using Google Earth Engine[J]. Applied Sciences-Basel, 2020, 10(25):7336.

    [30]

    Fashae O A, Adagbasa E G, Olusola A O, et al. Land use/land cover change and land surface temperature of Ibadan and environs,Nigeria[J]. Environmental Monitoring and Assessment, 2020, 192(2):109.

    [31]

    董欣, 刘鹏程. 基于GEE的土地利用变化对生态系统服务价值的影响研究——以京津冀地区为例[J]. 华中师范大学学报(自然科学版), 2020, 54(4):670-678.

    [32]

    Dong X, Liu P C. Impacts study of GEE-based land use changes on ecosystem service value(ESV):Take the Beijing-Tianjin-Hebei Region as an example[J]. Journal of Central China Normal University (Natural Sciences), 2020, 54(4):670-678.

    [33]

    杨可明. 遥感原理与应用[M]. 北京: 中国矿业大学出版社, 2016:231-234.

    [34]

    Yang K M. Remote sensing principle and applications[M]. Beijing: China University of Mining and Technology Press, 2016:231-234.

    [35]

    Cerrillo R M N, Rodriguez G P, Rumbao I C, et al. Modeling major rural land-use changes using the GIS-based cellular automata metronamica model:The case of andalusia (Southern Spain)[J]. ISPRS International Journal of Geo-Information, 2020, 9(7):458.

  • 加载中
计量
  • 文章访问数:  649
  • PDF下载数:  64
  • 施引文献:  0
出版历程
收稿日期:  2020-11-17
刊出日期:  2021-09-15

目录