Transportation in the Siliguri Corridor, West Bengal, India: distribution characteristics, trafficability, and geological environment
-
摘要: 基于33景高分一号(GF-1)和高分二号(GF-2)卫星多光谱遥感影像(覆盖面积154 814 km2),对西里古里走廊地区开展了遥感解译工作,获取了该地区各级公路里程数、路网密度、分布情况等要素,掌握了该地区道路交通的总体特征。在此基础之上,选取了西里古里走廊特定重点区域,以地貌、断裂构造、岩性、地质灾害发育程度、道路状况等要素作为因子进行加权打分,评估了重点区道路交通的通行能力。进一步地,抓取了重点区19个关键节点,运用复杂网络理论进行定量运算,得出了关键节点全网效率变化量ΔE和全网效率相对下降率e等参量,这些参量表征了各关键节点对于整体路网通行性的重要程度。对于重要性位于前列的4个关键节点,开展了解剖研究,分析了关键节点周缘重要目标、坡度、工程岩土体类型等地质环境特点,提出了潜在灾害及隐患。Abstract: Remote sensing interpretation of the Siliguri Corridor, West Bengal, India was carried out based on 33 scenes of multispectral remote sensing images from GF-1 and GF-2 satellites, which cover an area of 154 814 km2. As a result, the mileage, density, and distribution of highways at all levels in the Siliguri Corridor were obtained, and the overall characteristics of the transportation in the area were ascertained. Then this paper assessed the trafficability in the selected key areas using the weighted scoring method from the aspects such as landform, lithology, geologic disasters, and road conditions. Furthermore, the factors such as the variation and relative decrease rate of whole network’s efficiency (ΔE and e) of 19 pivotal nodes were calculated using the complex network theory. They can be used to characterize the importance of pivotal nodes relative to the overall trafficability of the road network. For the four most important pivotal nodes, the geological environment characteristics (i.e., important targets, slope, and engineering rock and soil masses in the peripheries of the nodes) were analyzed and potential disasters and risks were proposed.
-
-
[1] Small K A, Verhoef E T. The economics of urban transportation[M]. London: Routledge, 2007.
[2] Vuchic V R. Urban public transportation systems[D]. Philadelphia:University of Pennsylvania, 2002.
[3] Button K. Transport economics[M]. London: Edward Elgar Publishing, 2010.
[4] 王润生, 童立强, 林键, 等. 遥感地质勘查技术与应用研究[J]. 地质学报, 2011, 85(11):1699-1743.
[5] Wang R S, Tong L Q, Lin J, et al. Remote sensing technology and its application in geological exploration[J]. Acta Geologica Sinica, 2011, 85(11):1699-1743.
[6] 付长亮, 杨清华, 姜琦刚, 等. 遥感技术在境外地质调查中的应用——以津巴布韦大岩墙为例[J]. 国土资源遥感, 2015, 27(4):85-92.doi: 10.6046/gtzyyg.2015.04.14.
[7] Fu C L, Yang Q H, Jiang Q G, et al. Application of remote sensing technique to geological survey abroad:A case study of Great Dyke,Zimbabwe[J]. Remote Sensing for Land and Resources, 2015, 27(4):85-92.doi: 10.6046/gtzyyg.2015.04.14.
[8] 于德浩, 龙凡, 杨清雷, 等. 现代军事遥感地质学发展及其展望[J]. 中国地质调查, 2017, 4(3):74-82.
[9] Yu D H, Long F, Yang Q L, et al. Development and prospects of modern military remote sensing geology[J]. Geological Survey of China, 2017, 4(3):74-82.
[10] 张栋, 吕新彪, 葛良胜, 等. 军事地质环境的研究内涵与关键技术[J]. 地质论评, 2019, 65(1):181-198.
[11] Zhang D, Lyu X B, Ge L S, et al. Research connotation and key technology of the military geological environment in the land battlefield[J]. Geological Review, 2019, 65(1):181-198.
[12] 徐泽鸿, 杨雪清, 李超, 等. 基于德国国家监测数据的境外遥感抽样调查方法研究[J]. 林业资源管理, 2014(1):41-51.
[13] Xu Z H, Yang X Q, Li C, et al. Research on overseas RS sampling inventory approach based on German NFI data[J]. Forest Resources Management, 2014(1):41-51.
[14] 杨清华, 陈华, 孟月玥, 等. 全国边海防地区基础地质遥感调查[R]. 北京:中国自然资源航空物探遥感中心, 2018.
[15] Yang Q H, Chen H, Meng Y Y, et al. Geological remote sensing of national border and costal defense areas[R]. Beijing:China Aero Geophysical Survey & Remote Sensing Center for Natural Resources, 2018.
[16] 杨清华, 于德浩, 龙凡, 等. 全国边海防地区遥感地质调查技术要求[S]. 北京: 地质出版社, 2018.
[17] Yang Q H, Yu D H, Long F, et al. Skills requirement of geological remote sensing of national border and costal defense areas[S]. Beijing: Geological Publishing House, 2018.
[18] 郭瑞军. 基于间隙接受理论的环形交叉口通行能力研究[D]. 北京:北京交通大学, 2013.
[19] Guo R J. Study on capacity of roundabouts based on gap acceptance theory[D]. Beijing:Beijing Jiaotong University, 2013.
[20] 陈金邕. 考虑可变通行能力及停车位约束的早高峰通勤问题研究[D]. 合肥:中国科学技术大学, 2019.
[21] Chen J Y. Study on morning commute problem considering variable capacity and parking space constraint[D]. Hefei:University of Science and Technology of China, 2019.
[22] 吴鼎新. 间歇优先公交专用道的通行能力及其影响研究[D]. 南京:东南大学, 2019.
[23] Wu D X. Study on capacity of bus lane with intermittent priority and its impacts[D]. Nanjing:Southeast University, 2019.
[24] 劭长桥, 张兴宇, 罗凯, 等. 高速公路施工区通行能力研究综述[J]. 武汉理工大学学报(交通科学与工程版), 2021, 45(2):207-212.
[25] Shao C Q, Zhang X Y, Luo K, et al. A review of estimating capacity in expressway work zones[J]. Journal of Wuhan University of Technology, 2021, 45(2):207-212.
[26] Latora V, Marchiori M. Is the Boston subway a small-world network?[J]. Physica A:Statistical Mechanics and Its Applications, 2002, 314(1-4):109-113.
[27] Sen P, Dasgupta S, Chatterjee A, et al. Small-world properties of the Indian railway network[J]. Physical Review E, 2003, 67(3):036106.
[28] Angeloudis P, Fisk D. Large subway systems as complex networks[J]. Physica A:Statistical Mechanics and Its Applications, 2006, 367:553-558.
[29] 金雷. 基于复杂网络的地域公路交通网抗毁性分析[D]. 长沙:国防科技大学, 2008.
[30] Jin L. Survivability analysis of road traffic network in the area based on the complex network[D]. Changsha:National University of Defense Technology, 2008.
[31] 叶青. 基于复杂网络理论的轨道交通网络脆弱性分析[J]. 中国安全科学学报, 2012, 22(2):122-126.
[32] Ye Q. Vulnerability analysis of rail transit based on complex network theory[J]. China Safety Science Journal, 2012, 22(2):122-126.
[33] 潘桂堂, 丁俊, 姚东生. 1:150万青藏高原及邻区地质图[Z]. 成都: 成都地图出版社, 2004.
[34] Pan G T, Ding J, Yao D S. Geological map of the Qinghai-Tibet Plateau and adjacent areas (1:1,500,000)[Z]. Chengdu: Chengdu Map Publishing House, 2004.
[35] Geological Purnia Quadrangle Map (1:250,000)[Z]. Geological Survey of India, 1995.
[36] Geological Dumka Quadrangle Map (1:250,000)[Z]. Geological Survey of India, 1998.
[37] Geological map of Eastern Nepal (1:250,000)[Z]. ADM Carto Consult Pvt. Ltd, 2006.
[38] Geological map of Bangladesh (1:1,000,000)[Z]. Geological Survey of Bangladesh, 1990.
[39] Geo-India Nepal Bhutan Plot (1:1,000,000)[Z]. U.S.Department of the Interior and USGS, 1990.
[40] 孙广忠, 孙毅. 地质工程学原理[M]. 北京: 地质出版社, 2004.
[41] Sun G Z, Sun Y. Principles of engineering geology[M]. Beijing: Geological Publishing House, 2004.
[42] 赵法锁, 李相然. 工程地质学[M]. 北京: 地质出版社, 2009.
[43] Zhao F S, Li X R. Engineering geology[M]. Beijing: Geological Publishing House, 2009.
-
计量
- 文章访问数: 1113
- PDF下载数: 150
- 施引文献: 0