Variation and effect analysis of the water level of the Taihu Lake based on multi-source satellite altimetry data
-
摘要: 基于Envisat与Cryosat-2卫星测高数据利用波形重跟踪算法提取2003年1月—2019年4月太湖水位信息,并对测高数据进行粗差剔除、卫星间系统误差消除,结合MODIS光学遥感影像提取太湖边界信息,得到长时间序列太湖水位数据。结合气象观测数据和城市人口变迁数据,讨论太湖水位变化规律及其对气候变化以及人类活动影响的响应。结果表明: 2003—2009年期间太湖水位呈上升趋势(0.036 m/a),2009—2019年期间太湖水位呈下降趋势(-0.014 4 m/a); 地表温度及降水均对太湖水位变化有周期性影响,其中降水的影响更为显著; 此外,随着太湖周边城市化进程加快,以2009年为节点,2009年后周边城市人口增长速度加快,城市用水需求加大,导致太湖水位呈下降趋势,表明人类活动对太湖水位变化有整体性影响。Abstract: The water level of the Taihu Lake from January 2003 to April 2019 was monitored using the waveform retracking method based on the altimetry data of Envisat and Cryosat-2 satellites. Through gross error elimination and system error correction as well as the boundary extraction of Taihu Lake using MODIS remote sensing images, the long time series of the water level of the Taihu Lake were obtained. Based on these as well as weather observation data and the data on urban population changes, the variation pattern of the water level and its response to climate change and human activities were discussed. The results are as follows. The water level of the Taihu Lake showed an upward trend (0.036 m/a) during 2003—2009 and a downward trend (-0.014 4 m/a) during 2010—2019. It was affected by the ground surface temperature and precipitation in a periodic manner, especially the precipitation. In addition, as the urbanization in the cities around the Taihu Lake accelerated, the population growth rate in the cities had increased and the water demand had notably increased accordingly from 2009. This resulted in a distinct downward trend in the water level of the Taihu Lake since 2009, indicating that human activities affected the water level of the Taihu Lake over.
-
Key words:
- satellite altimetry /
- Envisat /
- Cryosat-2 /
- Taihu water level change /
- climate change /
- human activities /
-
-
[1] 王跃峰, 许有鹏, 张倩玉, 等. 太湖平原区河网结构变化对调蓄能力的影响[J]. 地理学报, 2016, 71(3):449-458.
[2] Wang Y F, Xu Y P, Zhang Q Y, et al. Influence of stream structure change on regulation capacity of river networks in Taihu Lake Basin[J]. Acta Geographica Sinica, 2016, 71(3):449-458.
[3] 赵云, 廖静娟, 沈国状, 等. 卫星测高数据监测青海湖水位变化[J]. 遥感学报, 2017, 21(4):633-644.
[4] Zhao Y, Liao J J, Shen G Z, et al. Monitoring the water level changes in Qinghai Lake with satellite altimetry data[J]. Journal of Remote Sensing, 2017, 21(4):633-644.
[5] Sakaros B, Frédéric F, Fabien B, et al. Monitoring water levels and discharges using Radar altimetry in an ungauged river basin:The case of the Ogooué[J]. Remote Sensing, 2018, 10(3):350.
[6] 李建成, 褚永海, 姜卫平, 等. 利用卫星测高资料监测长江中下游湖泊水位变化[J]. 武汉大学学报(信息科学版), 2007(2):144-147.
[7] Li J C, Chu Y H, Jiang W P, et al. Monitoring level fluctuation of lakes in Yangtze river basin by altimetry[J]. Geomatics and Information Science of Wuhan University, 2007, 32(2):144-147.
[8] Jiang L G, Nielsen K, Andersen O B, et al. Monitoring recent lake level variations on the Tibetan Plateau using CryoSat-2 SARIn mode data[J]. Journal of Hydrology, 2017, 544:109-124.
[9] Frappart F, Calmant S, Cauhopé M, et al. Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin[J]. Remote Sensing of Environment, 2006, 100(2):252-264.
[10] Song C S C, Ye Q Y Q, Sheng Y S Y, et al. Combined ICESat and CryoSat-2 altimetry for accessing water level dynamics of Tibetan lakes over 2003-2014[J]. Water, 2015, 7(9):4685-4700.
[11] Song C, Ye Q, Cheng X. Shifts in water-level variation of Namco in the central Tibetan Plateau from ICESat and CryoSat-2 altimetry and station observations[J]. Science Bulletin, 2015(14):67-77.
[12] Soussi B. Envisat altimetry level 2 user manual[EB/OL]. Paris:ESA, 2011,https://earth.esa.int/web/guest/home.
[13] Frappart F, Calman T S, Cauhopé M, et al. Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin[J]. Remote Sensing of Environment, 2006, 100(2):252-264.
[14] Mertz J D, Urien S. Baseline-C CryoSat ocean processor ocean product handbook[EB/OL]. Paris:ESA, 2019,https://science-pds.Cryosat-2.esa.int.
[15] Kamel Didan A B M R. MODIS vegetation index user’s guide[EB/OL]. Tucson:The University of Arizona, 2015,https://modis.gsfc.nasa.gov/data/dataprod/mod13.php.
[16] 赵煜飞, 朱江, 许艳, 等. 气象数据集说明文档[EB/OL]. 北京:国家气象信息中心资料服务室, 2012. http://data.cma.cn.
[17] Zhao Y F, Zhu J, Xu Y. et al. Surface climate changes per month grid 0.5[EB/OL]. Beijing:Data Service Room of National Meteorological Information Center, 2012. http://data.cma.cn.
[18] Kuo H Y. Comparison of GPS radio occultation soundings with radiosondes[J]. Geophysical Research Letters, 2005, 32(5):L5817.
[19] 太湖流域管理局. 水情月报[EB/OL]. 上海:太湖流域管理局,2007—2019. http://www.tba.gov.cn.
[20] Bureau of Taihu Lake basin. Water monthly report[EB/OL]. Shanghai:Bureau of Taihu Lake Basin,2007—2019. http://www.tba.gov.cn.
[21] 国家统计局人口和就业统计司. 中国人口统计年鉴[M]. 北京: 中国统计出版社, 2003-2018.
[22] Department of Population and Employment Statistics National Bureau Statistics of Chian. China population statistics yearbook[M]. Beijing: China Statistics Press, 2003-2018.
[23] 文汉江, 金涛勇, 朱广彬. 卫星测高原理及应用[M]. 北京: 测绘出版社, 2017.
[24] Wen H J, Jin T Y, Zhu G B, et al. Principle and application of satellite altimetry[M]. Beijing:The mapping publishing company, 2017.
[25] Song C, Ye Q, Sheng Y, et al. Combined ICESat and CryoSat-2 altimetry for accessing water level dynamics of Tibetan lakes over 2003-2014[J]. Water, 2015, 7(9):4685-4700.
[26] 于欢, 张树清, 李晓峰, 等. 基于TM影像的典型内陆淡水湿地水体提取研究[J]. 遥感技术与应用, 2008(3):310-315.
[27] Yu H, Zhang S Q, Li X F, et al. Inland limnetic wetlands water body extraction using TM imagery[J]. Remote Sensing Technology and Application, 2008(3):310-315.
[28] 汪丹, 王点, 齐述华. 鄱阳湖水位-淹水面积关系不确定性的分析[J]. 长江流域资源与环境, 2016, 25(s1):95-102.
[29] Wang D, Wang D, Qi S H. Uncertainty analysis of Poyang lake water level-flooded area relationship[J]. Resources and Environment in the Yangtze Basin, 2016, 25(s1):95-102.
[30] 张克祥, 张国庆. MODIS监测的鄱阳湖水域面积变化研究(2000—2011年)[J]. 东华理工大学学报(社会科学版), 2013, 32(3):390-396.
[31] Zhang K X, Zhang G Q. Monitoring area changes of Poyang lake by MODIS data (2000—2011)[J]. Journal of East China University of Technology (Social Science), 2013, 32(3):390-396.
[32] 赵云. 雷达高度计数据中国主要湖泊水位变化监测方法研究[D]. 北京:中国科学院大学(中国科学院遥感与数字地球研究所), 2017.
[33] Zhang Y. Method of monitoring water level change of main lakes in China with Radar altimeter data[D]. Beijing:The University of Chinese Academy of Sciences, 2017.
[34] Gao L, Liao J J, Shen G Z. Monitoring lake-level changes in the Qinghai-Tibetan Plateau using radar altimeter data (2002—2012)[J]. Journal of Applied Remote Sensing, 2013, 7(1):073470.
[35] 张鑫, 吴艳红, 张鑫. 基于多源卫星测高数据的扎日南木错水位动态变化(1992—2012年)[J]. 自然资源学报, 2015, 30(7):1153-1162.
[36] Zhang X, Wu Y H, Zhang X. Zhari Namco water level change detection using multi-satellite altimetric data during 1992—2012[J]. Journal of Natural Resources, 2015, 30(7):1153-1162.
-
计量
- 文章访问数: 744
- PDF下载数: 73
- 施引文献: 0