A method for extracting match pairs of UAV images considering geospatial information
-
摘要: 针对无人机影像三维重建中匹配像对提取适应性差、效率低、需准确的先验知识等问题,提出一种顾及无人机影像地理空间信息的匹配像对提取方法。首先利用主成分分析(principal component analysis,PCA)方法将高维度的特征降至低维特征,提高检索词典构建效率; 其次,通过计算查询影像之间的反距离权重因子,构建综合检索因子,提高相似影像之间的可区分性; 最后,通过计算检索阈值,舍弃阈值后的无效匹配像对,进一步提高了影像查准率。实验结果表明,与传统脚印图法和128维特征检索方法相比,该方法获得了更高的处理效率及更全面的稀疏重建结果,尤其针对海量无人机数据更具优势。Abstract: To overcome the shortcomings such as poor adaptability, low efficiency, and the demand for prior knowledge in the 3D reconstruction using UAV images, this study proposed a method for extracting match pairs of UAV images considering geospatial information. The steps of this method are stated as follows. Firstly, reduce high-dimensional features of the images to low-dimensional features using the principal component analysis (PCA) method to improve the construction efficiency of the retrieval vocabulary. Secondly, construct a comprehensive retrieval factor by calculating the inverse distance weighting factor between query images to improve the distinguishability between similar images. Finally, discard invalid match pairs by calculating the retrieval threshold to improve the query precision of images. The experimental results show that, compared to the traditional footprint map method and 128-dimensional feature retrieval method, this method enjoys higher processing efficiency and more comprehensive sparse reconstruction results, especially for the massive UAV data.
-
Key words:
- match pairs /
- bag of visual words /
- UAV /
- 3D reconstruction /
- image retrieval
-
-
[1] 雷添杰, 李长春, 何孝莹. 无人机航空遥感系统在灾害应急救援中的应用[J]. 自然灾害学报, 2011, 20(1):178-183.[1] Lei T J, Li C C, He X Y. Application of aerial remote sensing of pilotless aircraft to disaster emergency rescue[J]. Journal of Natural Disasters, 2011, 20(1):178-183.[2] 李明, 张卫龙, 范丁元. 城市三维重建中的自动纹理优化方法[J]. 测绘学报, 2017, 46(3):338-345.[2] Li M, Zhang W L, Fan D Y. Automatic texture optimization for 3D urban reconstruction[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3):338-345.[3] 黄海峰, 易武, 张国栋, 等. 引入小型无人机遥感的滑坡应急治理勘察设计方法[J]. 防灾减灾工程学报, 2017, 37(1):99-104.[3] Huang H F, Yi W, Zhang G D, et al. Method of using micro-VAVRS in engineering geological investigation and design for emergency control of landslides[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, 37(1):99-104.[4] 于丙辰, 陈刚, 段淼然, 等. 无人机遥感在大型不可移动文物三维重建中的应用[J]. 测绘通报, 2017(5):43-46.[4] Yu B C, Chen G, Duan M R, et al. UAV RS applied in 3D reconstruction of huge immovable cultural relics[J]. Bulletin of Surveying and Mapping, 2017(5):43-46.[5] 何海清. 低空摄影测量航带重构及数据处理方法研究[J]. 测绘学报, 2014, 43(40):440.[5] He H Q. The study of strips reconstruction oriented data processing methodology in low-altitude photogrammetry[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(4):440.[6] 肖熊武, 郭丙轩, 李德仁, 等. 一种具有仿射不变性的倾斜影像快速匹配方法[J]. 测绘学报, 2015, 44(4):414-421.[6] Xiao X W, Guo B X, Li D R, et al. A quick and affine invariance matching method for oblique images[J]. Acta Geodaetica et Cartographica Sinica,2015, 44(4):414-421.[7] 闫利, 费亮, 叶志云, 等. 大范围倾斜多视影像连接点自动提取的区域网平差法[J]. 测绘学报, 2016, 45(3):310-317.[7] Yan L, Fei L, Ye Z Y, et al. Automatic tie-points extraction for triangulation of large-scale oblique multi-view images[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(3):310-317.[8] David G L. Distinctive image feature from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110. [9] Morel J M, Yu G. ASIFT:A new framework for fully affine invariant image comparison[J]. SIAM Journal on Imaging Sciences, 2009, 2(2):438-469. [10] Wu C. SiftGPU:A GPU implementation of scale invariant feature transform(SIFT)[EB/OL].(2013 -03-11)[2021-02-07].https://github.com/pitzer/SiftGPU. [11] Agarwal S, Snavely N, Simon I, et al. Building rome in a day[C]// 12th International Conference on Computer Vision.IEEE, 2009:72-79.[12] Snavely N, Seitz S, Szeliski R. Photo tourism:Exploring photo collections in 3D[C]// Special Interest Group on Computer Graphics and Interactive Techniques Conference.ACM, 2006, 25(3):835-846.[13] Johannes L, Schonberger,Frahm J M.Structure-from-motion revisited[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2016:1-10.[14] 任超锋, 彭晓东. 低空无人机影像匹配像对的提取方法[J]. 测绘工程, 2019, 28(6):36-41.[14] Ren C F, Peng X D. Extraction method of image pairs for low-altitude UAV image matching[J]. Engineering of Surveying and Mapping, 2019, 28(6):36-41.[15] 李劲澎, 姜挺, 肖达, 等. 基于关系图的无人机影像三维重建[J]. 光学精密工程, 2016, 24(6):1501-1509.[15] Li J P, Jiang T, Xiao D, et al. On diagram-based three-dimensional reconstruction of UAV image[J]. Optics and Prcesion Engineering, 2016, 24(6):1501-1509.[16] 姜三, 许志海, 张峰, 等. 面向无人机倾斜影像的高效SfM重建方案[J]. 武汉大学学报(信息科学版), 2019, 44(8):1153-1160.[16] Jiang S, Xu Z H, Zhang F, et al. Solution for efficient SfM reconstruction of oblique UAV images[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8):1153-1160.[17] Sivic J, Zisserman A. Video Google:A text retrieval approach to object matching in videos[C]// International Conference on Computer Vision.IEEE, 2003:1470-1477.[18] Jegou H, Douze M, Schmid C. Hamming embedding and weak geometric consistency for large scale image search[C]// European Conference on Computer Vsion, 2008:304-317.[19] Schunberger J L, Price T, Sattler T, et al. A vote-and-verify strategy for fast spatial verification in image retrieval[C]// Asian Conference on Computer Vision.Springer, 2016:321-337.[20] Nister D, Stevenisu H. Scalable recognition with a vocabulary tree[C]// Computer Society Conference on Computer Vision and Pattern Recognition.IEEE, 2006:2161-2168.
-
计量
- 文章访问数: 793
- PDF下载数: 35
- 施引文献: 0