中国自然资源航空物探遥感中心主办
地质出版社出版

基于1990-2019年Landsat影像的干旱区绿洲土地利用变化与模拟

宋奇, 冯春晖, 马自强, 王楠, 纪文君, 彭杰. 2022. 基于1990-2019年Landsat影像的干旱区绿洲土地利用变化与模拟. 自然资源遥感, 34(1): 198-209. doi: 10.6046/zrzyyg.2021042
引用本文: 宋奇, 冯春晖, 马自强, 王楠, 纪文君, 彭杰. 2022. 基于1990-2019年Landsat影像的干旱区绿洲土地利用变化与模拟. 自然资源遥感, 34(1): 198-209. doi: 10.6046/zrzyyg.2021042
SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. 2022. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019. Remote Sensing for Natural Resources, 34(1): 198-209. doi: 10.6046/zrzyyg.2021042
Citation: SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. 2022. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019. Remote Sensing for Natural Resources, 34(1): 198-209. doi: 10.6046/zrzyyg.2021042

基于1990-2019年Landsat影像的干旱区绿洲土地利用变化与模拟

  • 基金项目:

    兵团中青年创新领军人才项目“棉田土壤剖面盐渍化的卫星遥感监测研究“(2020CB032)

    国家重点研发计划项目“土壤综合观测与智能服务平台研发与应用“(2018YFE0107000)

详细信息
    作者简介: 宋奇(1996-),男,硕士研究生,主要研究方向为国土资源与遥感。Email: tarimsongqi@163.com
  • 中图分类号: TP79

Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019

  • 探明西北干旱区典型人工绿洲阿拉尔垦区的土地利用变化及未来发展情况,为类似地区土地利用变化的调控和管理提供参考。将逐年各月份影像进行多时相合成后,运用支持向量机分类方法获得逐年土地利用分类图,从面积变化、类型转化、空间动态变化3方面进行土地利用变化分析,采用CA(cellular automaton)-Markov模型模拟2050和2080年土地利用变化情况,基于累积距平法和通径分析方法探究其突变情况和驱动因素。研究结果表明: 1990—2019年,阿拉尔垦区耕地、园地、水体和建设用地的面积呈增加趋势,其中耕地和园地面积的增加主要是由塔里木河沿岸区域之外的未利用地转换而来。至2080年,垦区东北和东南部的未利用地将被逐渐开垦,耕地、园地和建设用地的面积将大幅增加。阿拉尔垦区土地利用类型面积在2005年发生转折性变化,耕地、园地和建设用地的面积急剧增加; 垦区土地利用变化的主要驱动因素为总人口、农业生产总值和棉花价格。研究结论: 在未来土地开发利用过程中,应当制定可持续发展的耕地开发政策,严格控制建设用地面积,构建合理的土地利用结构。
  • 加载中
  • [1]

    董祚继. 从土地利用规划到国土空间规划——科学理性规划的视角[J]. 中国土地科学, 2020, 34(5):1-7.[1] Dong Q J. From land-use planning to territorial space planning:A perspective of scientific and rational planning[J]. China Land Science, 2020, 34(5):1-7.[2] 胡苏李扬, 李辉, 顾延生, 等. 基于高分辨率遥感影像的神农架大九湖湿地土地利用类型变化及其驱动力分析——来自长时间尺度多源遥感信息的约束[J]. 自然资源遥感, 2021, 33(1):221-230.doi: 10.6046/gtzyyg.2020100. [2] Hu S L Y, Li H, Gu Y S, et al. An analysis of land use changes and driving forces of Dajiuhu wetland in Shennongjia based on high reso-lution remote sensing images:Constraints from the multi-source and long-term remote sensing information[J]. Remote Sensing for Land and Resources, 2021, 33(1):221-230.doi: 10.6046/gtzyyg.2020100. [3] Yu H, Liu X M, Kong B, et al. Landscape ecology development supported by geospatial technologies:A review[J]. Ecological Informatics, 2019, 51:185-192. [4] 高文龙, 苏腾飞, 张圣微, 等. 矿区地物分类及土地利用/覆盖变化动态监测——以海流兔流域为例[J]. 自然资源遥感, 2020, 32(3):232-239.doi: 10.6046/gtzyyg.2020.03.30. [4] Gao W L, Su T F, Zhang S W, et al. Classification of objects and LUCC dynamic monitoring in mining area:A case study of Hailiutu watershed[J]. Remote Sensing for Land and Resources, 2020, 32(3):232-239.doi: 10.6046/gtzyyg.2020.03.30. [5] Guo Y, Fang G, Xu Y P, et al. Identifying how future climate and land use/cover changes impact streamflow in Xinanjiang Basin,East China[J]. Science of the Total Environment, 2020, 710:136275. [6] Chen L D, Liu Y, Lyu Y H, et al. Pattern analysis in landscape ecolo-gy:Progress,challenges and outlook[J]. Acta Ecologica Sinica, 2008, 28(11):5521-5531. [7] 杜金龙, 朱记伟, 解建仓, 等. 基于GIS的城市土地利用研究进[J]. 自然资源遥感, 2018, 30(3):9-17.doi: 10.6046/gtzyyg.2018.03.02. [7] Du J L, Zhu J W, Xie J C, et al. An overview of urban land use research based on GIS[J]. Remote Sensing for Land and Resources, 2018, 30(3):9-17.doi: 10.6046/gtzyyg.2018.03.02. [8] 张瑜, 赵晓丽, 左丽君, 等. 黄土高原土地利用变化对生态系统服务价值的影响[J]. 自然资源遥感, 2019, 31(3):132-139.doi: 10.6046/gtzyyg.2019.03.17. [8] Zhang Y, Zhao X L, Zuo L J, et al. The impact of land use change on ecosystem services value in Loess Plateau[J]. Remote Sensing for Land and Resources, 2019, 31(3):132-139.doi: 10.6046/gtzyyg.2019.03.17. [9] Wang Y H, Dai E F, Yin L, et al. Land use/land cover change and the effects on ecosystem services in the Hengduan Mountain region,China[J]. Ecosystem Services, 2018, 34(a):55-67. [10] Wang J, Chen Y Q, Shao X M, et al. Land-use changes and policy dimension driving forces in China:Present,trend and future[J]. Land Use Policy, 2012, 29(4):737-749. [11] Wu J G. Landscape ecology[J]. Encyclopedia of Ecology(Second Edition), 2019, 4:527-531.[12] Antrop M. The language of landscape ecologists and planners:A comparative content analysis of concepts used in landscape ecology[J]. Landscape and Urban Planning, 2001, 55(3):163-173. [13] Liu Y L, Luo T, Liu Z Q, et al. A comparative analysis of urban and rural construction land use change and driving forces:Implications for urbanerural coordination development in Wuhan[J]. Central China.Habitat International, 2015, 47:113-125.[14] Kabisch N, Selsam P, Kirsten T, et al. A multi-sensor and multi-temporal remote sensing approach to detect land cover change dynamics in heterogeneous urban landscapes[J]. Ecological Indicators, 2019, 99:273-282. [15] Zhao L, Huang W, Chen J, et al. Land use/cover changes in the Oriental migratory locust area of China:Implications for ecological control and monitoring of locust area[J]. Agriculture,Ecosystems and Environment, 2020, 303:107110. [16] Shen S G, Yue P, Fan C J. Quantitative assessment of land use dynamic variation using remote sensing data and landscape pattern in the Yangtze River delta,China[J]. Sustainable Computing:Informatics and Systems, 2019, 23:111-119. [17] Wang X C, Dong X B, Liu H M, et al. Linking land use change,ecosystem services and human well-being:A case study of the Manas River basin of Xinjiang,China[J]. Ecosystem Services, 2017, 27(a):113-123. [18] Jia B Q, Zhang Z Q, Ci L G, et al. Oasis land-use dynamics and its influence on the oasis environment in Xinjiang,China[J]. Journal of Arid Environments, 2004, 56(1):11-26. [19] Tian G J, Liu J Y, Xie Y C, et al. Analysis of spatio-temporal dynamic pattern and driving forces of urban land in China in 1990s using TM images and GIS[J]. Cities, 2005, 22(6):400-410. [20] 岳东霞, 杨超, 江宝骅, 等. 基于CA-Markov模型的石羊河流域生态承载力时空格局预测[J]. 生态学报, 2019, 39(6):1993-2003.[20] Yue D X, Yang C, Jiang B H, et al. Spatio-temporal pattern prediction of the biocapacity in the Shiyang River basin on the basis of the CA-Markov model[J]. Acta Ecologica Sinica, 2019, 39(6):1993-2003.[21] 郭瑞琦, 陆波, 陈恺霖. 基于CLUMondo模型的多情景土地利用变化动态模拟——以广西沿海城市为例[J]. 自然资源遥感, 2020, 32(1):176-183.doi: 10.6046/gtzyyg.2020.01.24. [21] Guo R Q, Lu B, Chen K L. Dynamic simulation of multi-scenario land use change based on CLUMondo model:A case study of coastal cities in Guangxi[J]. Remote Sensing for Land and Resources, 2020, 32(1):176-183.doi: 10.6046/gtzyyg.2020.01.24. [22] 季翔, 黄炎和, 林金石, 等. 基于CA-Markov模型与ANUDEM内插法的崩岗侵蚀量预估[J]. 农业工程学报, 2018, 34(21):128-136.[22] Ji X, Huang Y H, Lin J S, et al. Estimation of erosion amount in collapsed gully based on CA-Markov model and ANUDEM interpolation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(21):128-136.[23] 成超男, 胡杨, 冯尧, 等. 基于CA-Markov模型的城市生态分区构建研究——以晋中主城区为例[J]. 生态学报, 2020, 40(4):1455-1462.[23] Chen C N, Hu Y, Feng Y, et al. Construction of urban ecological zones based on CA-Markov model:A case study of the main urban of Jinzhong[J]. Acta Ecologica Sinica, 2020, 40(4):1455-1462.[24] Matsa M, Mupepi O, Musasa T, et al. A GIS and remote sensing aided assessment of land use/cover changes in resettlement areas:A case of ward 32 of Mazowe district,Zimbabwe[J]. Journal of Environmental Management, 2020, 276:111312. [25] 夏芳. 钱塘江流域气候变化及其对水文径流的影响[D]. 杭州:浙江大学, 2016.[25] Xia F. Climate change in the Qiantang River basin and its influence on local runoff[D]. Hangzhou:Zhejiang University, 2016.[26] Zhuang Q W, Wu S X, Yan Y Y, et al. Monitoring land surface thermal environments under the background of landscape patterns in arid regions:A case study in Aksu River basin[J]. Science of the Total Environment, 2020, 710(25):136336. [27] 陶帅, 邝婷婷, 彭文甫, 等. 2000—2015年长江上游NDVI时空变化及驱动力——以宜宾市为例[J]. 生态学报, 2020, 40(14):5029-5043.[27] Tao S, Kuang T T, Peng W F, et al. Analyzing the spatio-temporal variation and drivers of NDVI in upper reaches of the Yangtze River from 2000 to 2015:A case study of Yibin City[J]. Acta Ecologica Sinica, 2020, 40(14):5029-5043.[28] Fan Q D, Ding S Y. Landscape pattern changes at a county scale:A case study in Fengqiu,Henan Province,China from 1990 to 2013[J]. Catena, 2016, 137:152-160. [29] 袁静文, 武辰, 杜博, 等. 高分五号高光谱遥感影像的城市土地利用景观格局分析[J]. 遥感学报, 2020, 24(4):465-478.[29] Yuan J W, Wu C, Du B, et al. Analysis of landscape pattern on urban land use based on GF-5 hyperspectral data[J]. Journal of Remote Sensing, 2020, 24(4):465-478.[30] 朱永森, 曾永年, 张猛. 基于HJ卫星数据与面向对象分类的土地利用/覆盖信息提取[J]. 农业工程学报, 2017, 33(14):258-265.[30] Zhu Y S, Zeng Y N, Zhang M. Extract of land use/cover information based on HJ satellites data and object-oriented classification[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(14):258-265.[31] 朱金峰, 周艺, 王世新, 等. 1975—2018年白洋淀湿地变化分析[J]. 遥感学报, 2019, 23(5):971-986.[31] Zhu J F, Zhou Y, Wang S X, et al. Analysis of changes of Baiyangdian wetland from 1975 to 2018 based on remote sensing[J]. Journal of Remote Sensing, 2019, 23(5):971-986.[32] 刘敬杰, 夏敏, 刘友兆, 等. 基于多智能体与CA结合模型分析的农村土地利用变化驱动机制[J]. 农业工程学报, 2018, 34(6):242-252.[32] Liu J J, Xia M, Liu Y Z, et al. Driving mechanism of rural land use change based on multi-agent system and cellular automata[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(6):242-252.[33] 王兆林, 牙升业, 蒲海霞, 等. 基于改进CA-Markov模型的山地城市边缘区土地利用变化模拟[J]. 农业工程学报, 2020, 36(16):239-248.[33] Wang Z L, Ya S Y, Pu H X, et al. Simulation of spatiotemporal variation of land use in mountainous-urban fringes based on improved CA-Markov model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(16):239-248.[34] 李少英, 刘小平, 黎夏, 等. 土地利用变化模拟模型及应用研究进展[J]. 遥感学报, 2017, 21(3):329-340.

    [34] Li S Y, Liu X P, Li X, et al. Simulation model of land use dynamics and application:Progress and prospects[J]. Journal of Remote Sensing, 2017, 21(3):329-340.

  • 加载中
计量
  • 文章访问数:  861
  • PDF下载数:  45
  • 施引文献:  0
出版历程
收稿日期:  2021-02-07
刊出日期:  2022-03-14

目录