中国自然资源航空物探遥感中心主办
地质出版社出版

国产微景一号小卫星影像的城市裸地识别应用

孙一鸣, 张宝钢, 吴其重, 刘奥博, 高超, 牛静, 何平. 2022. 国产微景一号小卫星影像的城市裸地识别应用. 自然资源遥感, 34(1): 189-197. doi: 10.6046/zrzyyg.2021056
引用本文: 孙一鸣, 张宝钢, 吴其重, 刘奥博, 高超, 牛静, 何平. 2022. 国产微景一号小卫星影像的城市裸地识别应用. 自然资源遥感, 34(1): 189-197. doi: 10.6046/zrzyyg.2021056
SUN Yiming, ZHANG Baogang, WU Qizhong, LIU Aobo, GAO Chao, NIU Jing, HE Ping. 2022. Application of domestic low-cost micro-satellite images in urban bare land identification. Remote Sensing for Natural Resources, 34(1): 189-197. doi: 10.6046/zrzyyg.2021056
Citation: SUN Yiming, ZHANG Baogang, WU Qizhong, LIU Aobo, GAO Chao, NIU Jing, HE Ping. 2022. Application of domestic low-cost micro-satellite images in urban bare land identification. Remote Sensing for Natural Resources, 34(1): 189-197. doi: 10.6046/zrzyyg.2021056

国产微景一号小卫星影像的城市裸地识别应用

  • 基金项目:

    国家重点研发计划项目“全球关键区域大气污染协同控制策略“(2020YFA0607804)

    国家重点研发计划项目“全耦合多尺度空气质量预报平台研发和示范应用“(2017YFC0209805)

    中央高校基本科研业务费专项资金资助项目及北京高精尖学科“陆地表层学“

详细信息
    作者简介: 孙一鸣(1998-),男,硕士研究生,主要研究方向为环境遥感、空气质量模式与模拟。Email: symkfz@outlook.com
  • 中图分类号: TP79

Application of domestic low-cost micro-satellite images in urban bare land identification

  • 低成本微小卫星及其星座组成是近年来卫星遥感领域发展的重要方向之一,可有效弥补单一卫星过境频次过少和组网成本过高的问题。遥感卫星监测具有覆盖面广、不易受人为干扰的优点,是生态环境领域获取裸地信息的重要手段。该文基于国产微景系列低成本微小卫星的遥感影像数据开展了城市裸地识别的探索性研究,并将其结果与美国陆地系列卫星(Landsat8)影像进行了对比分析,探讨国产微小卫星在生态环境领域裸地识别应用中的可靠性。以山东省日照市东港区城区为研究区域,构建无监督植被指数(ExG-ExR)和最大似然法结合的提取方法,并加以应用。结果表明: ①微景一号02星拍摄的5 m空间分辨率全色影像能清晰反映研究城区现状,影像具有高空间分辨率,对地物细节拍摄更清楚,但相比Landsat8影像缺乏波段优势; ②微景一号02星影像总分类精度为93.3%,Kappa系数可达到0.85,微景系列小卫星在裸地识别具有一定的可靠性; ③微景一号02卫星与Landsat8卫星提取日照东港城区裸地面积相差1.5个百分点,表明在拍摄时间相近和一致地理坐标校正情况下,算法得当,微景系列小卫星在裸地识别方面具有与传统主流卫星相当的城区裸地反演识别能力。
  • 加载中
  • [1]

    [15] Xu Y Q, Jiang N, Yan Q S, et al. Research on emission inventory of bareness wind erosion dust in Zhengzhou[J]. Environmental Pollution and Control, 2016, 38(4):22-27.[16] 张立坤, 李令军, 姜磊, 等. 北京建筑施工裸地时空变化及扬尘污染排放[J]. 环境科学, 2019, 40(1):135-142.[16] Zhang L K, Li L J, Jiang L, et al. Spatial and temporal distribution characteristics and fugitive dust emission of building sites in Beijing[J]. Environmental Science, 2019, 40(1):135-142. [17] 李丹, 梅晓丹, 赵鹤, 等. GF-1与Landsat8影像土地利用遥感解译对比分析[J]. 测绘工程, 2018, 27(10):42-45.[17] Li D, Mei X D, Zhao H, et al. Comparative analysis of GF-1 and Landsat8 image land use remote sensing interpretation[J]. Engineering of Surveying and Mapping, 2018, 27(10):42-45.[18] 牛静. 京师一号卫星[J]. 卫星应用, 2019(10):70.[18] Niu J. Jingshi-1(BNU-1) microsat[J]. Satellite Application, 2019(10):70.[19] 徐涵秋, 唐菲. 新一代Landsat系列卫星: Landsat8遥感影像新增特征及其生态环境意义[J]. 生态学报, 2013, 33(11):3249-3257.[19] Xu H Q, Tang F. Analysis of new characteristics of the first Landsat8 image and their ecoenvironmental significance[J]. Acta Ecologica Sinica, 2013, 33(11):3249-3257. [20] 王振武, 孙佳骏, 于忠义, 等. 基于支持向量机的遥感图像分类研究综述[J]. 计算机科学, 2016, 43(9):11-17.[20] Wang Z W, Sun J J, Yu Z Y, et al. Review of remote sensing image classification based on support vector machine[J]. Computer Science, 2016, 43(9):11-17.[21] 吴非权, 马海州, 沙占江, 等. 基于决策树与监督、非监督分类方法相结合模型的遥感应用研究[J]. 盐湖研究, 2005, 13(4):9-13.[21] Wu F Q, Ma H Z, Sha Z J, et al. Combining the decision tree and supervised,unsupervised technique to classify the satellite images[J]. Journal of Salt Lake Research, 2005, 13(4):9-13.[22] 柏延臣, 王劲峰. 结合多分类器的遥感数据专题分类方法研究[J]. 遥感学报, 2005, 9(5):555-563.[22] Bo Y C, Wang J F. Combining multiple classifiers for thematic classification of remotely sensed data[J]. Journal of Remote Sensing, 2005, 9(5):555-563.[23] 吴志杰, 赵书河. 基于TM图像的“增强的指数型建筑用地指数”研究[J]. 自然资源遥感, 2012, 24(2):50-55.doi: 10.6046/gtzyyg.2012.02.10. [23] Wu Z J, Zhao S H. A study of enhanced index-based built-up index based on Landsat TM imagery[J]. Remote Sensing for Land and Resources, 2012, 24(2):50-55.doi: 10.6046/gtzyyg.2012.02.10. [24] Meyer G E, Neto J C. Verification of color vegetation indices for automated crop imaging applications[J]. Computers and Electronics in Agriculture, 2008, 63(2):282-293. [25] Woebbecke D M, Meyer G E, Vonbargen K, et al. Color indexes for weed identification under various soil,residue,and lighting conditions[J]. Transactions of The ASAE, 1995, 38(1):259-269. [26] Meyer G, Hindman T, Laksmi K. Machine vision detection parameters for plant species identification[J]. Proceedings of SPIE - The International Society for Optical Engineering, 1999, 3543.[27] Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation[J]. Journal of Electronic Imaging, 2004, 13(1):146-168. [28] 崔方宁, 宋晓宇, 孙宝生, 等. 基于多时相TM影像的冬小麦面积变化监测[J]. 遥感信息, 2012, 27(5):89-95.[28] Cui F N, Song X Y, Sun B S, et al. Change detection of winter wheat area based on multi-temporal TM images[J]. Remote Sensing Information, 2012, 27(5):89-95.[29] 吴一全, 孟天亮, 吴诗婳. 图像阈值分割方法研究进展20年(1994—2014)[J]. 数据采集与处理, 2015, 30(1):1-23.[29] Wu Y Q, Meng T L, Wu S H. Research progress of image thresholding methods in recent 20 years(1994—2014)[J]. Journal of Data Acquisition and Processing, 2015, 30(1):1-23.[30] 周钰哲. 微小卫星特性与应用发展概述[J]. 数字通信世界, 2018(12):26-27.[30] Zhou Y Z. Overview of microsatellite characteristics and application development[J]. Digital Communication World, 2018(12):26-27.

  • 加载中
计量
  • 文章访问数:  1084
  • PDF下载数:  31
  • 施引文献:  0
出版历程
收稿日期:  2021-03-01
刊出日期:  2022-03-14

目录