中国自然资源航空物探遥感中心主办
地质出版社出版

基于无人机多光谱数据的玉米苗株估算

赵晓伟, 黄杨, 汪永强, 储鼎. 2022. 基于无人机多光谱数据的玉米苗株估算. 自然资源遥感, 34(1): 106-114. doi: 10.6046/zrzyyg.2021072
引用本文: 赵晓伟, 黄杨, 汪永强, 储鼎. 2022. 基于无人机多光谱数据的玉米苗株估算. 自然资源遥感, 34(1): 106-114. doi: 10.6046/zrzyyg.2021072
ZHAO Xiaowei, HUANG Yang, WANG Yongqiang, CHU Ding. 2022. Estimation of maize seedling number based on UAV multispectral data. Remote Sensing for Natural Resources, 34(1): 106-114. doi: 10.6046/zrzyyg.2021072
Citation: ZHAO Xiaowei, HUANG Yang, WANG Yongqiang, CHU Ding. 2022. Estimation of maize seedling number based on UAV multispectral data. Remote Sensing for Natural Resources, 34(1): 106-114. doi: 10.6046/zrzyyg.2021072

基于无人机多光谱数据的玉米苗株估算

  • 基金项目:

    国家自然科学基金项目“土壤水分与表面粗糙度的光学与雷达遥感协同反演算法研究“编号资助(41971323)

详细信息
    作者简介: 赵晓伟(1991-),男,硕士,助理工程师,主要从事环境遥感方面的研究。Email: 614639191@qq.com
  • 中图分类号: TP79

Estimation of maize seedling number based on UAV multispectral data

  • 为能及时监测和评估东北大面积的玉米出苗情况,估算苗株数,依据低空无人机(unmanned aerial vehicle,UAV)遥感影像为玉米苗株数的快速估算提供有效支持。研究基于UAV多光谱数据,通过对比ExG,GBDI,ExG-ExR,NGRDI,GLI等颜色指数分割玉米与土壤背景,借助OTSU算法确定最佳阈值,选定最佳颜色指数ExG。优化出最佳形态学特征参数的组合: 面积A、周长B、矩形长D、矩形周长G、椭圆长轴长度H、形状因子Q。借助支持向量机回归(support vector regression,SVR)模型,预测出玉米苗株数,评价精度,并估算和绘制了局地玉米苗株数的空间分布图。该SVR模型测试的精度达到96.54%,统计误差为0.6%。研究成果能够在短时间内迅速、快捷、准确地预测玉米苗株数和长势趋势。
  • 加载中
  • [1]

    Liu P, Guo W S, Xu Y M, et al. Effect of planting density on grain yield and quality of weak gluten and medium-gluten wheat[J]. Journal of Triticeae Crops, 2006, 26:117-121.[2] 葛朝红, 孟建朝, 赵海龙. 影响棉花出苗的因素分析[J]. 现代农村科技, 2011(18):13.[2] Ge C H, Meng J C, Zhao H L. Analysis of factors affecting cotton emergence[J]. Modern Rural Science and Technology, 2011(18):13.[3] 胡健波, 张健. 无人机遥感在生态学中的应用进展[J]. 生态学报, 2018, 38(1):20-30.[3] Hu J B, Zhang J. Unmanned aerial vehicle remote sensing in ecology:Advances and prospects[J]. Acta Ecologica Sinica, 2018, 38(1):20-30.[4] 戴建国, 张国顺, 郭鹏, 等. 基于无人机遥感多光谱影像的棉花倒伏信息提取[J]. 农业工程学报, 2019, 35(2):63-70.[4] Dai J G, Zhang G S, Guo P, et al. Information extraction of cotton lodging based on multi-spectral image from UAV remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(2):63-70.[5] Mitch B, Reid A, Ramos F, et al. Airbornevision based mapping and classification of large farmland environments[J]. Journal of Field Robotics, 2010, 27(5):632-655. [6] 丁雷龙, 李强子, 杜鑫, 等. 基于无人机图像颜色指数的植被识别[J]. 自然资源遥感, 2016, 28(1):78-86.doi: 10.6046/gtzyyg.2016.01.12. [6] Ding L L, Li Q Z, Du X, et al. Vegetation extraction method based on color indices from UAV images[J]. Remote Sensing for Land and Resources, 2016, 28(1):78-86.doi: 10.6046/gtzyyg.2016.01.12. [7] 汪小钦, 王苗苗, 王绍强, 等. 基于可见光波段无人机遥感的植被信息提取[J]. 农业工程学报, 2015, 31(5):152-159.[7] Wang X Q, Wang M M, Wang S Q, et a1. Extraction of vegetation information from visible unmanned aerial vehicle images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5):152-159.[8] 兰玉彬, 邓小玲, 曾国亮. 无人机农业遥感在农作物病虫草害诊断应用研究进展[J]. 智慧农业, 2019, 1(2):1-19.[8] Lan Y B, Deng X L, Zeng G L. Advances in diagnosis of crop diseases,pests and weeds by UAV remote sensing[J]. Smart Agriculture, 2019, 1(2):1-19.[9] Zheng X L, Zhang X F, Cheng J Y, et al. Using the multispectral image data acquired by unmanned aerial vehicle to build an estimation model of the number of seedling stage cotton plants[J]. Journal of Image and Graphics, 2020, 25(3):520-534.[10] 戴建国, 薛金利, 赵庆展, 等. 利用无人机可见光遥感影像提取棉花苗情信息[J]. 农业工程学报, 2020, 36(4):63-71.[10] Dai J G, Xue J L, Zhao Q Z, et al. Extraction of cotton seedling growth information using UAV visible light remote sensing images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(4):63-71.[11] 刘帅兵, 杨贵军, 周成全, 等. 基于无人机遥感影像的玉米苗期株数信息提取[J]. 农业工程学报, 2018, 34(22):69-77.[11] Liu S B, Yang G J, Zhou C Q, et al. Extraction of maize seedling number information based on UAV imagery[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(22):69-77.[12] Zhao B, Zhang J, Yang C H, et al. Rapeseed seedling stand counting and seeding performance evaluationat two early growth stages based on unmanned aerial vehicle imagery[J]. Frontiers in Plant Science, 2018, 9:1362. [13] Han L, Yang G J, Dai H Y, et al. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data[J]. Plant Methods, 2019, 15(1):10. [14] Woebbecke D M, Meyer G E, Bargen K V, et al. Color indices for weed identification under various soil,residue,and lighting conditions[J]. Transactions of the ASABE, 1995, 38(1):259-269.[15] Verrelst J, Schaepman M E, Koetz B, et al. Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data[J]. Remote Sensing of Environment, 2008, 112(5):2341-2353. [16] Motohka T, Nasahara K N, Oguma H, et al. Applicability of green-red vegetation index for remote sensing of vegetation phenology[J]. Remote Sensing, 2010, 2(10):2369-2387. [17] Liu G R, Huang Z, Mao S C, et al. Application study about OTSU optimal threshold method in cotton seedling recognition[J]. Cotton Science, 2013, 25(1):86-89.[18] 刘广瑞, 黄真, 毛树春, 等. OTSU最佳阈值法在棉花幼苗识别中的应用研究[J]. 棉花学报, 2013, 25(1):86-89.[18] Liu G R, Huang Z, Mao S C, et al. Application study about OTSU optimal threshold method in cotton seedling recognition[J]. Cotton Science, 2013, 25(1):86-89.[19] Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems,Man and Cybernetics, 1979, 9(1):62-66. [20] Pal M. Kernel methods in remote sensing:A review[J]. ISH Journal of Hydraulic Engineering, 2009:15194-15215.[21] Bakhshipour A, Jafari A. Evaluation of support vector machine and artificial neural networks in weed detection using shape features[J]. Computers and Electronics in Agriculture, 2018, 145:153-160. [22] Zheng Y, Zhu Q B, Huang M, et al. Maize and weed classification using color indices with support vector data description in outdoor fields[J]. Computers and Electronics in Agriculture, 2017, 141:215-222.

  • 加载中
计量
  • 文章访问数:  1080
  • PDF下载数:  65
  • 施引文献:  0
出版历程
收稿日期:  2021-03-15
刊出日期:  2022-03-14

目录