Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet
-
摘要: 西藏自治区藏东南地区冰川广布,在全球变暖背景下,冰川失稳现象凸显,冰崩隐患的光学遥感调查对该区域防灾减灾工作具有实际意义。根据遥感影像上冰崩隐患的色调、形态、纹理、阴影等特征,建立遥感解译标志,开展研究区冰崩隐患的遥感解译。在藏东南地区共解译出冰崩隐患232处,其中大型47处,特大型147处,巨型38处,结合地形地貌、地质环境特征,分析了其基本特征和空间分布规律,划分出4个集中分布区、2个集中分布带。研究区冰崩隐患具有明显的链式特征,根据冰崩隐患与其可能引起的次生灾害之间的时空关系,将藏东南冰崩灾害链分为冰崩-冰湖溃决-泥石流灾害链、冰崩-碎屑流-堰塞湖-洪水灾害链、冰崩-碎屑流灾害链等3种类型,分别以米堆沟、尖母普曲、则隆弄沟为例,基于光学遥感技术对其动态变化特征、链式结构进行了详细分析,以期为藏东南地区冰崩灾害的深入研究提供基础资料。Abstract: Glaciers are widely distributed in southeast Tibet. Glacier instability is prominent in this region against the backdrop of global warming. Surveys of the potential hazards of ice avalanches using optical remote sensing are practically significant for disaster prevention and mitigation in the region. According to the hue, morphology, texture, and shadow characteristics of the potential hazards of ice avalanches on remote sensing images, this study established the symbols of remote sensing interpretation of potential hazards of ice avalanches in the study area. Based on this, a total of 232 potential hazards of ice avalanches were interpreted in southeast Tibet, including 47 large, 147 super large, and 38 giant ones. Then, this study analyzed the essential characteristics and spatial distribution of the potential hazards based on the characteristics of terrain, landform, and regional geological environment. Consequently, four concentrated distribution areas and two concentrated distribution zones were determined. The potential hazards of ice avalanches in the study area show distinct chain characteristics. According to the spatio-temporal relationships between the potential hazards and their possible secondary disasters, the ice avalanche disaster chains in southeast Tibet can be divided into three types, namely, ice avalanche - glacial lake outburst flood - debris flow disaster chains, ice avalanche - debris flow - barrier lake - flood disaster chains, and ice avalanche - debris flow disaster chains. Taking the potential hazard chains of ice avalanches in Miduigou, Jianmupuqu, and Zelongnonggou as examples, this study analyzed the dynamic change characteristics and chain structure of these potential hazard chains using optical remote sensing technology. The purpose is to provide basic data for an in-depth study on potential hazards of ice avalanches in southeast Tibet.
-
-
[1] 童立强, 裴丽鑫, 涂杰楠, 等. 冰崩灾害的界定与类型划分——以青藏高原地区为例[J]. 自然资源遥感, 2020, 32(2):11-18.doi: 10.6046/gtzyyg.2020.02.02. [1] Tong L Q, Pei L X, Tu J N, et al. A preliminary study of definition and classification of ice avalanche in the Tibetan Plateau region[J]. Remote Sensing for Land and Resources, 2020, 32(2):11-18.doi: 10.6046/gtzyyg.2020.02.02. [2] Sangewar C V. Remote sensing applications to study Indian glaciers[J]. Geocarto International, 2012, 27(3):197-206. [3] Leinss S, Bernardini E, Jacquemart M, et al. Glacier detachments and rock-ice avalanches in the Petra Pervogo range,Tajikistan (1973—2019)[J]. Natural Hazards and Earth System Sciences, 2021, 21(5):1409-1429.[4] Gilbert A, Leinss S, Kargel J, et al. Mechanisms leading to the 2016 giant twin glacier collapses,Aru Range,Tibet[J]. The Cryosphere, 2018, 12(9):2883-2900. [5] Kaab A, Leinss S, Gilbert A, et al. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability[J]. Nature Geoscience, 2018, 11(2):114-120. [6] Wang S, Yang B, Zhou Y, et al. Snow cover mapping and ice avalanche monitoring from the satellite data of the sentinels[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, XLII- 3:1765-1772.[7] Margreth S, Funk M, Tobler D, et al. Analysis of the hazard caused by ice avalanches from the hanging glacier on the Eiger west face[J]. Cold Regions Science and Technology, 2017, 144:63-72. [8] 姚檀栋, 邬光剑, 徐柏青, 等. ”亚洲水塔“变化与影响[J]. 中国科学院院刊, 2019, 34(11):1203-1209.[8] Yao T D, Wu G J, Xu B Q, et al. Asian water tower change and its impacts[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11):1203-1209.[9] 姚檀栋, 余武生, 邬光剑, 等. 青藏高原及周边地区近期冰川状态失常与灾变风险[J]. 科学通报, 2019, 64(27):2770-2782.[9] Yao T D, Yu W S, Wu G J, et al. Glacier anomalies and relevant disaster risks on the Tibetan Plateau and surroundings[J]. Chinese Science Bulletin, 2019, 64(27):2770-2782.[10] 裴丽鑫. 青藏高原地区冰崩灾害特征与类型的初步研究[D]. 北京:中国地质大学(北京),2019.[10] Pei L X. The preliminary study of characteristics and types of ice avalanche disaster in the Tibetan Plateau[D]. Beijing:China University of Geosciences(Beijing),2019.[11] 胡文涛, 姚檀栋, 余武生, 等. 高亚洲地区冰崩灾害的研究进展[J]. 冰川冻土, 2018, 40(6):1141-1152.[11] Hu W T, Yao T D, Yu W S, et al. Advances in the study of glacier avalanches in high Asia[J]. Journal of Glaciology and Geocryology, 2018, 40(6):1141-1152.[12] Geng Q R, Pan G T, Zheng L L, et al. The eastern Himalayan syntaxis:Major tectonic domains,ophiolitic melanges and geologic evolution[J]. Journal of Asian Earth Sciences, 2006, 27(3):265-285. [13] Deng Q D, Zhang P Z, Ran Y K, et al. Basic characteristics of active tectonics of China[J]. Science in China Series D:Earth Sciences, 2003, 46(4):356-372.[14] Ding L, Zhong D L, Yin A, et al. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis(Namche Barwa)[J]. Earth and Planetary Science Letters, 2001, 192(3):423-438. [15] 刘金花, 易朝路, 李英奎. 藏南卡鲁雄峰枪勇冰川新冰期冰川发育探讨[J]. 第四纪研究, 2018, 38(2):348-354.[15] Liu J H, Yi C L, Li Y K. Reconstruction of the neoglacial glaciers in the Qiangyong valley,Mt.Kaluxung,south Tibet[J]. Quaternary Sciences, 2018, 38(2):348-354.[16] Rothlisberger H. Ice avalanches[J]. Journal of Glaciology, 1977, 19(81):669-671. [17] 黄宗理, 张良弼. 地球科学大辞典——应用学科卷[M]. 北京: 地质出版社, 2005.[17] Huang Z L, Zhang L B. A dictionary of earth sciences[M]. Beijing: Geological Press, 2005.[18] 刘建康, 张佳佳, 高波, 等. 我国西藏地区冰湖溃决灾害综述[J]. 冰川冻土, 2019, 41(6):1335-1347.
[18] Liu J K, Zhang J J, Gao B, et al. An overview of glacial lake outburst flood in Tibet,China[J]. Journal of Glaciology and Geocryolo-gy, 2019, 41(6):1335-1347.
-
计量
- 文章访问数: 733
- PDF下载数: 35
- 施引文献: 0