中国自然资源航空物探遥感中心主办
地质出版社出版

甘肃金川矿区地表三维形变InSAR监测

杨旺, 何毅, 张立峰, 王文辉, 陈有东, 陈毅. 2022. 甘肃金川矿区地表三维形变InSAR监测. 自然资源遥感, 34(1): 177-188. doi: 10.6046/zrzyyg.2021107
引用本文: 杨旺, 何毅, 张立峰, 王文辉, 陈有东, 陈毅. 2022. 甘肃金川矿区地表三维形变InSAR监测. 自然资源遥感, 34(1): 177-188. doi: 10.6046/zrzyyg.2021107
YANG Wang, HE Yi, ZHANG Lifeng, WANG Wenhui, CHEN Youdong, CHEN Yi. 2022. InSAR monitoring of 3D surface deformation in Jinchuan mining area, Gansu Province. Remote Sensing for Natural Resources, 34(1): 177-188. doi: 10.6046/zrzyyg.2021107
Citation: YANG Wang, HE Yi, ZHANG Lifeng, WANG Wenhui, CHEN Youdong, CHEN Yi. 2022. InSAR monitoring of 3D surface deformation in Jinchuan mining area, Gansu Province. Remote Sensing for Natural Resources, 34(1): 177-188. doi: 10.6046/zrzyyg.2021107

甘肃金川矿区地表三维形变InSAR监测

  • 基金项目:

    甘肃省自然科学基金项目“联合InSAR与地基测量的兰州市主城区边坡形变监测研究“编号(2019M660092XB)

    甘肃省青年科学基金项目“基于多轨InSAR技术的城市地面沉降与土地利用演变关系—

    以兰州新区为例“共同资助编号(20JR10RA272)

详细信息
    作者简介: 杨旺(1996-),男,硕士研究生,主要研究方向为InSAR技术应用。Email: 947258095@qq.com
  • 中图分类号: TP79

InSAR monitoring of 3D surface deformation in Jinchuan mining area, Gansu Province

  • 金川矿区是我国最大的镍矿生产基地,2018年提出复采计划以来,对该矿区地表形变的监测还是空白。该文基于3个轨道(升轨128、降轨33和135)的Sentinel-1A数据,利用小基线集雷达干涉 (small baseline subset InSAR,SBAS-InSAR)和结合先验条件的最小二乘迭代法获得金川矿区2018—2020年的地表三维分量形变速率和时序形变量,并使用水准实测数据对垂直向累计形变值进行验证。结果表明: 金川矿区在3个开采区(龙首矿、西二矿、东三矿)形成了3个大面积的形变区域,主要表现为地表沉降,其中最大垂直向形变量和形变速率发生在西二矿区,分别为-408.9 mm和-162.8 mm/a。龙首矿区西南和东北边坡向矿脉处收缩,西二矿区和东三矿区形成的形变区域位移方向相似,均为沉降漏斗东西两侧向矿脉处收缩。金川矿区地表形变与人机采动、地质断层以及岩性构造紧密相关,其中人机采动是地表形变的主要原因,断层和岩性构造是地表形变的控制性因素。研究结果为金川矿区安全生产和开采规划提供理论支撑。
  • 加载中
  • [1]

    尹宏杰. 基于InSAR的矿区地表形变监测研究[D]. 长沙:中南大学, 2009.[1] Yin H J. Ground subsidence monitoring in mining area using InSAR[D]. Changsha:Central South University, 2009.[2] 中国地质调查局地质环境监测院. 全国矿山地质调查报告[R]. 北京:中国地质调查局, 2016.[2] China Institute of Geo-Enoironmental Monitoring, CGS. National mine geological survey report[R]. Beijing:China Geological Survey, 2016.[3] Siriwardane H J, Amanat J. Analysis of subsidence caused by underground mining[J]. International Journal of Mining Engineering, 1984, 2(4):271-290. [4] Nie L, Wang H, Xu Y, et al. A new prediction model for mining subsidence deformation:The arc tangent function model[J]. Natural Hazards, 2015, 75(3):2185-2198. [5] Hui X, Ma F, Zhao H, et al. Monitoring and statistical analysis of mine subsidence at three metal mines in China[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(6):3983-4001. [6] Chen B, Li Z, Yu C, et al. Three-dimensional time-varying large surface displacements in coal exploiting areas revealed through integration of SAR pixel offset measurements and mining subsidence model[J]. Remote Sensing of Environment, 2020, 240:111663. [7] Massonnet D, Feigl K L. Radar interferometry and its application to changes in the Earth‘s surface[J]. Reviews of Geophysics, 1998, 36(4):441-500. [8] 李勇发, 左小清, 麻源源, 等. 基于PS-InSAR技术和遗传神经网络算法的矿区地表沉降监测与预计[J]. 地球物理学进展, 2020, 35(3):845-851.[8] Li Y F, Zuo X Q, Ma Y Y, et al. Surface subsidence monitoring and prediction based on PS-InSAR and genetic neural network algorithm[J]. Progress in Geophysics, 2020, 35(3):845-851.[9] Simons M, Fialko Y, Rivera L. Coseismic deformation from the 1999 Mw 7.1 Hector Mine,California,earthquake as inferred from InSAR and GPS observations[J]. Bulletin of the Seismological Society of America, 2002, 92(4):1390-1402. [10] Zhao C, Lu Z, Zhang Q, et al. Mining collapse monitoring with SAR imagery data:A case study of Datong mine,China[J]. Journal of Applied Remote Sensing, 2014, 8(1):083574. [11] Wempen J M, McCarter M K. Comparison of L-band and X-band differential interferometric synthetic aperture Radar for mine subsidence monitoring in central Utah[J]. International Journal of Mining Science and Technology, 2017, 27(1):159-163. [12] Carla T, Farina P, Intrieri E, et al. Integration of ground-based Radar and satellite InSAR data for the analysis of an unexpected slope failure in an open-pit mine[J]. Engineering Geology, 2018, 235:39-52. [13] Li J, Gao F, Lu J. An application of InSAR time-series analysis for the assessment of mining-induced structural damage in Panji Mine,China[J]. Natural Hazards, 2019, 97(1):243-258. [14] Ma C, Cheng X, Yang Y, et al. Investigation on mining subsidence based on multi-temporal InSAR and time-series analysis of the small baseline subset:Case study of working faces 22201-1/2 in Bu’ ertai mine,Shendong coalfield,China[J]. Remote Sensing, 2016, 8(11):951-975. [15] Pawluszek-Filipiak K, Borkowski A. Integration of DInSAR and SBAS techniques to determine mining-related deformations using sentinel-1 data:The case study of Rydultowy mine in Poland[J]. Remote Sensing, 2020, 12(2):242-264. [16] Torres R, Snoeij P, Geudtner D, et al. GMES Sentinel-1 mission[J]. Remote Sensing of Environment, 2012, 120:9-24. [17] Hu J, Li Z W, Zhu J J, et al. Inferring three-dimensional surface displacement field by combining SAR interferometric phase and amplitude information of ascending and descending path[J]. Science China Earth Sciences, 2010, 53(4):550-560. [18] 李强. 基于空天地数据集成的甘肃金川矿区地表沉降监测[D]. 绵阳:西南科技大学, 2020.[18] Li Q. Surface subsidence monitoring of Jinchuan mining area in gansu based on space-air-ground integration[D]. Mianyang:Southwest University of Science and Technology, 2020.[19] 耿许可. 基于时序InSAR的龙首矿区形变监测研究[D]. 青岛:山东科技大学, 2018.[19] Geng X K. Study of the subsidence-monitoring in dragon head mine area with times series InSAR technology[D]. Qingdao:Shandong University of Science and Technology, 2018.[20] 丁宁, 邓清海, 耿许可, 等. 融合时序InSAR与GPS的龙首矿露天矿坑三维变形规律研究[J]. 金属矿山, 2019(10):61-67.[20] Ding N, Deng Q H, Geng X K, et al. Study on the 3D deformation regularity of the open pit in Longshou mine based on time series InSAR technique and GPS[J]. Metal Mine, 2019(10):61-67.[21] 张拥军, 杨登峰, 王金涛, 等. 露天边坡局部失稳特征的数值分析及监测[J]. 金属矿山, 2014, 43(10):142-147.[21] Zhang Y J, Yang D F, Wang J T, et al. Numerical analysis and monitoring of local instability characteristics of open pit slope[J]. Metal Mine, 2014, 43(10):142-147.[22] Yang S, Yang G, Qu W, et al. Pt-Os isotopic constraints on the age of hydrothermal overprinting on the Jinchuan Ni-Cu-PGE deposit,China[J]. Mineralium Deposita, 2018, 53(6):757-774. [23] Prichard H M, Knight R D, Fisher P C, et al. Distribution of platinum-group elements in magmatic and altered ores in the Jinchuan intrusion,China:An example of selenium remobilization by postmagmatic fluids[J]. Mineralium Deposita, 2013, 48(6):767-786. [24] Wang W, He Y, Zhang L, et al. Analysis of surface deformation and driving forces in Lanzhou[J]. Open Geosciences, 2020, 12(1):1127-1145. [25] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383. [26] 白泽朝, 汪宝存, 靳国旺, 等. Sentinel-1A数据矿区地表形变监测适用性分析[J]. 自然资源遥感, 2019, 31(2):210-217.doi: 10.6046/gtzyyg.2019.02.29. [26] Bai Z C, Wang B C, Jin G W, et al. Applicability analysis of ground deformation monitoring in mining area by Sentinel-1A data[J]. Remote Sensing for Land and Resources, 2019, 31(2):210-217.doi: 10.6046/gtzyyg.2019.02.29. [27] Lanari R, Mora O, Manunta M, et al. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7):1377-1386. [28] He Y, Chen Y, Wang W, et al. TS-InSAR analysis for monitoring ground deformation in Lanzhou New District,the Loess Plateau of China,from 2017 to 2019[J]. Advances in Space Research, 2021, 67(4):1267-1283. [29] He Y, Wang W, Yan H, et al. Characteristics of surface deformation in Lanzhou with Sentinel-1A TOPS[J]. Geosciences, 2020, 10(3):99-102. [30] 王家庆. 2008年改则地震多视角InSAR三维形变场及断层滑动反演[D]. 北京:中国地震局地质研究所, 2015.[30] Wang J Q. The three-dimensional deformation field of the 2008 Gaize Tibet earthquake resolved from InSAR measurements with mult-incidence angle and inversion of fault slip distributions[D]. Beijing:Institute of Geology, China Earthquake Administration, 2015.[31] Wright T J, Parsons B E, Lu Z. Toward mapping surface deformation in three dimensions using InSAR[J]. Geophysical Research Letters, 2004, 31(1):1-5.[32] Peck R B. Deep excavations and tunneling in soft ground[C]// Proc.7th ICSMFE, 1969:225-290.[33] 张鹏飞. 基于时序InSAR技术的山区煤矿开采沉陷监测研究[D]. 徐州:中国矿业大学(徐州),2014.[33] Zhang P F. Research on mining subsidence monitoring of mountain coal mine based on time-series InSAR technology[D]. Xuzhou:China University of Mining and Technology(Xuzhou),2014.[34] 胡俊. 基于现代测量平差的InSAR三维形变估计理论与方法[D]. 长沙:中南大学, 2013.[34] Hu J. Theory and method of InSAR 3D deformation estimation based on modern measurement adjustment[D]. Changsha:Central South University, 2013.[35] 王志伟. 基于多源InSAR数据的三维地表形变解算方法研究[J]. 测绘学报, 2019, 48(9):1206.[35] Wang Z W. Research on 3D surface deformation calculation method based on multi-source InSAR data[J]. Journal of Geomatics and Mapping, 2019, 48(9):1206.[36] 祝传广. 融合多源SAR影像的形变监测研究[D]. 徐州:中国矿业大学(徐州),2015.[36] Zhu C G. Research on deformation monitoring based on multi-source SAR image fusion[D]. Xuzhou:China University of Mining and Technology(Xuzhou),2015.[37] 刘志敏, 李永生, 张景发, 等. 基于SBAS-InSAR的长治矿区地表形变监测[J]. 自然资源遥感, 2014, 26(3):37-42.doi: 10.6046/gtzyyg.2014.03.06. [37] Liu Z M, Li Y S, Zhang J F, et al. An analysis of surface deformation in the Changzhi mining area using small baseline InSAR[J]. Remote Sensing for Land and Resources, 2014, 26(3):37-42.doi: 10.6046/gtzyyg.2014.03.06. [38] Li X, Wang S J, Liu T Y, et al. Engineering geology,ground surface movement and fissures induced by underground mining in the Jinchuan nickel mine[J]. Engineering Geology, 2004, 76(1-2):93-107. [39] Sun Q, Ma F, Guo J, et al. Deformation failure mechanism of deep vertical shaft in Jinchuan mining area[J]. Sustainability, 2020, 12(6):2226-2248.

  • 加载中
计量
  • 文章访问数:  1304
  • PDF下载数:  84
  • 施引文献:  0
出版历程
收稿日期:  2021-04-13
刊出日期:  2022-03-14

目录