Monitoring of Zanthoxylum bungeanum Maxim planting using GF-2 PMS images and the random forest algorithm: A case study of Linxia, Gansu Province
-
摘要: 在目前植被遥感监测中,大类作物往往得到更多的关注,而对于某些具有重要生态功能和经济效益的小类树种却明显关注不足。花椒树是我国重要但小众的生态树种,其果实花椒是常见的油料和药用原料。对花椒树种植信息进行及时、准确的监测,对当地生态、经济和社会的协调发展至关重要。该文基于GF-2 PMS影像和随机森林算法探讨了花椒树遥感监测的可行性。结合光谱波段、归一化植被指数、纹理特征以及数字高程模型共4种分类特征,分别设计了3种分类方案。通过分析各分类方案的分类精度,进一步探讨了不同分类特征在花椒种植识别中的作用。研究结果表明,仅使用光谱波段时,总体精度最低,为65.90%; 增加归一化植被指数和数字高程模型特征时,总体精度小幅提升,为67.67%; 进一步增加纹理特征,总体精度大幅提高为74.43%,说明纹理特征的重要性。基于最优分类方案的结果显示,2018年研究区内花椒树主要种植在黄河沿岸和刘家峡库区周边,其总种植面积为231.59 km2,占研究区总面积的22.56%。其中,仅种植花椒树地块的面积为189.06 km2,混合种植花椒树的地块面积为42.53 km2。90%以上的花椒树分布在[1 683,2 300) m海拔范围内,且随着海拔升高呈现出“先减少-再增加-再减少“的变化趋势; 58%的花椒树分布在[8,25)°坡度范围内。总的来说,GF-2 PMS影像在花椒树种植监测中具有较大的潜力。开发对花椒树的遥感识别方法,不仅有助于当地生态产业调控和后续生态工程布局,并且对其他地区的生态树种或小类植被物种开展相关遥感监测工作也具有较强的借鉴意义。
-
关键词:
- GF-2 PMS影像 /
- 花椒树 /
- 随机森林 /
- 生态工程 /
- 种植监测
Abstract: Major crops tend to receive far more attention in current remote sensing (RS) monitoring of vegetation than minor tree species with ecological and economic benefits. Zanthoxylum bungeanum Maxim (ZBM) is an important but niche ecological tree, and its fruits are common oil and medicinal materials. It is vital for the sustainable development of local economy, ecology, and society to obtain accurate information of planting area and spatial distribution ZBM in time. Using the GF-2 PMS images and the random forest algorithm, this study discussed the feasibility of RS monitoring of ZBM planting. Three classification schemes were designed using four classification features, namely spectral bands, normalized difference vegetation index (NDVI), textural features, and digital elevation model (DEM). Furthermore, this study explored the role of different classification features in identifying ZBM by analyzing the classification accuracy of the schemes. Results show that it is difficult to obtain satisfactory classification accuracy when only spectral band characteristics were used (overall accuracy: 65.90%). Combining NDVI and DEM with the spectral band characteristics can slightly improve the classification effect (overall accuracy: 67.67%). After textural features were further combined, the overall accuracy was greatly increased (74.43%). This indicates that textural features play an important role in monitoring ZBM planting. As revealed by the results of the optimal classification scheme, ZBM in Linxia, Gansu Province is mainly distributed along the Yellow River and around the Liujiaxia Reservoir, with a total area of 231.59 km2, which accounts for 22.56% of the total area of the study area. The area of ZBM planted in the patterns of single cropping and mixed cropping is 189.06 km2 and 42.53 km2, respectively. More than 90% of ZBM grows at an elevation of [1 683, 2 300) m and its number tends to decrease, increase, and decrease successively with an increase in the elevation. Moreover, 58% of ZBM are planted in regions with a slope of [8, 25)°. Overall, GF-2 PMS images have great potential in monitoring ZBM planting. The development of RS-based identification methods of ZBM will assist in the regulation of the local ecological industry and the layout of subsequent ecological engineering. Furthermore, it will provide a strong reference for the remote sensing monitoring of ecological tree species or a minority of vegetation species in other regions. -
-
[1] 孔繁业. 临夏州林业可持续发展的思考[J]. 甘肃农业, 2006(2):104-105.[1] Kong F Y. Thinking on the sustainable development of forestry in Linxia Prefecture[J]. Gansu Agriculture, 2006(2):104-105.[2] 刘萍. 临夏州花椒生产特点及产业发展建议[J]. 甘肃林业科技, 2003(4):80-83.[2] Liu P. Characteristics of Zanthoxylum bungeanum Maxim in Linxia Prefecture and suggestions for industrial development[J]. Journal of Gansu Forestry Science and Technology, 2003(4):80-83.[3] 安树康. 临夏州花椒发展现状及对策[J]. 林业科技开发, 2004(4):76-78.[3] An S K. The development status and countermeasures of Zanthoxylum bungeanum in Linxia Prefecture[J]. Journal of Forestry Engineering, 2004(4):76-78.[4] Liu J, Li S, Ouyang Z, et al. Ecological and socioeconomic effects of China‘s policies for ecosystem services[J]. Proceedings of the National Academy of Sciences, 2008, 105(28):9477-9482. [5] Song X, Peng C, Zhou G, et al. Chinese grain for green program led to highly increased soil organic carbon levels:A meta-analysis[J]. Scientific Reports, 2014(4):4460.[6] 杨学毅, 刘萍, 沈平, 等. 临夏州花椒有害生物种类及分布[J]. 甘肃林业科技, 2013, 38(4):25-30.[6] Yang X Y, Liu P, Shen P, et al. Species and distribution of pests of Zanthoxylum bungeanum in Linxia Prefecture[J]. Journal of Gansu forestry Science and Technology, 2013, 38(4):25-30.[7] Colomina I, Molina P. Unmanned aerial systems for photogrammetry and remote sensing:A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014(92):79-97.[8] Ferreira M P, Alves D S, Shimabukuro Y E. Forest dynamics and land-use transitions in the Brazilian Atlantic Forest:The case of sugarcane expansion[J]. Regional Environmental Change, 2015, 15(2):365-377. [9] Waldner F, Lambert M J, Li W, et al. Land cover and crop type classification along the season based on biophysical variables retrieved from multi-sensor high-resolution time series[J]. Remote Sensing, 2015, 7(8):10400-10424. [10] Xu X, Conrad C, Doktor D. Optimising phenological metrics extraction for different crop types in Germany using the moderate resolution imaging spectrometer (MODIS)[J]. Remote Sensing, 2017, 9(3):254. [11] Hunt M L, Blackburn G A, Carrasco L, et al. High resolution wheat yield mapping using Sentinel-2[J]. Remote Sensing of Environment, 2019, 233:111410. [12] Cheng Z, Meng J, Wang Y. Improving spring maize yield estimation at field scale by assimilating time-series HJ-1 CCD data into the WOFOST model using a new method with fast algorithms[J]. Remote Sensing, 2016, 8(4):303. [13] Mateo-Sanchis A, Piles M, Munoz-Mari J, et al. Synergistic integration of optical and microwave satellite data for crop yield estimation[J]. Remote Sensing of Environment, 2019, 234:111460. [14] Sakamoto T. Incorporating environmental variables into a MODIS-based crop yield estimation method for United States corn and soybeans through the use of a random forest regression algorithm[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 160:208-228. [15] Sakamoto T, Gitelson A A, Arkebauer T J. MODIS-based corn grain yield estimation model incorporating crop phenology information[J]. Remote Sensing of Environment, 2013, 131:215-231. [16] Tang X, Bullock E L, Olofsson P, et al. Near real-time monitoring of tropical forest disturbance:New algorithms and assessment framework[J]. Remote Sensing of Environment, 2019, 224:202-218. [17] Gomez C, White J C, Wulder M A. Characterizing the state and processes of change in a dynamic forest environment using hierarchical spatio-temporal segmentation[J]. Remote Sensing of Environment, 2011, 115(7):1665-1679. [18] Coppin P R, Bauer M E. Processing of multitemporal Landsat TM imagery to optimize extraction of forest cover change features[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4):918-927. [19] Hornero A, Hernandez-Clemente R, North P R J, et al. Monitoring the incidence of Xylella fastidiosa infection in olive orchards using ground-based evaluations,airborne imaging spectroscopy and Sentinel-2 time series through 3-D radiative transfer modelling[J]. Remote Sensing of Environment, 2020, 236:111480. [20] Liu Z, Wang S. Detecting changes of wheat vegetative growth and their response to climate change over the North China Plain[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(12):4630-4636. [21] Oumar Z, Mutanga O. Integrating environmental variables and WorldView-2 image data to improve the prediction and mapping of Thaumastocoris peregrinus (bronze bug) damage in plantation forests[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 87:39-46. [22] Zhong L, Hu L, Yu L, et al. Automated mapping of soybean and corn using phenology[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119:151-164. [23] Sakamoto T, Wardlow B D, Gitelson A A, et al. A two-step filtering approach for detecting maize and soybean phenology with time-series MODIS data[J]. Remote Sensing of Environment, 2010, 114(10):2146-2159. [24] Berger K, Verrelst J, Feret J-B, et al. Retrieval of aboveground crop nitrogen content with a hybrid machine learning method[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 92:102174. [25] Xie Q, Dash J, Huete A, et al. Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 80:187-195. [26] Chauhan S, Srivastava H S, Patel P. Wheat crop biophysical parameters retrieval using hybrid-polarized RISAT-1 SAR data[J]. Remote Sensing of Environment, 2018, 216:28-43. [27] Gopal S, Woodcock C. Remote sensing of forest change using artificial neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2):398-404. [28] Blackard J A, Dean D J. Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables[J]. Computers and Electronics in Agriculture, 1999, 24(3):131-151. [29] Ingram J C, Dawson T P, Whittaker R J. Mapping tropical forest structure in southeastern Madagascar using remote sensing and artificial neural networks[J]. Remote Sensing of Environment, 2005, 94(4):491-507. [30] Peng C, Wen X. Recent applications of artificial neural networks in forest resource management:An overview[R]// Corte; U,Sanche-Marre; M.Environmental Decision Support Systems and Artificial Intelligence.AAAI technical reports WS-99-07, 1999.[31] Huang C, Song K, Kim S, et al. Use of a dark object concept and support vector machines to automate forest cover change analysis[J]. Remote Sensing of Environment, 2008, 112(3):970-985. [32] Omer G, Mutanga O, Abdel-Rahman E M,et al.Performance of support vector machines and artificial neural network for mapping endangered tree species using WorldView-2 data in Dukuduku forest,South Africa[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(10):4825-4840. [33] Raczko E, Zagajewski B. Comparison of support vector machine,random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images[J]. European Journal of Remote Sensing, 2017, 50(1):144-154. [34] Sesnie S E, Finegan B, Gessler P E, et al. The multispectral separability of Costa Rican rainforest types with support vector machines and random forest decision trees[J]. International Journal of Remote Sensing, 2010, 31(11):2885-2909. [35] Mellor A, Haywood A, Stone C, et al. The performance of random forests in an operational setting for large area sclerophyll forest classification[J]. Remote Sensing, 2013, 5(6):2838-2856. [36] Wyniawskyj N S, Napiorkowska M, Petit D, et al. Forest monitoring in Guatemala using satellite imagery and deep learning[C]// 2019 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2019:6598-6601.[37] Sylvain J D, Drolet G, Brown N. Mapping dead forest cover using a deep convolutional neural network and digital aerial photography[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 156:14-26. [38] 薛传平, 高志海, 孙斌, 等. 浑善达克沙地榆树疏林的高分辨率遥感识别方法[J]. 自然资源遥感, 2018, 30(4):74-81.doi: 10.6046/gtzyyg.2018.04.12. [38] Xue C P, Gao Z H, Sun B, et al. Research on high resolution remote sensing recognition method of elm sparse forest in Otindag sandy land[J]. Remote Sensing for Land and Resources, 2018, 30(4):74-81.doi: 10.6046/gtzyyg.2018.04.12. [39] 杨欢, 邓帆, 张佳华, 等. 基于MODIS EVI的江汉平原油菜和冬小麦种植信息提取研究[J]. 自然资源遥感, 2020, 32(3):208-215.doi: 10.6046/gtzyyg.2020.03.27. [39] Yang H, Deng F, Zhang J H, et al. A study of information extraction of rape and winter wheat planting in Jianghan Plain based on MODIS EVI[J]. Remote Sensing for Land and Resources, 2020, 32(3):208-215.doi: 10.6046/gtzyyg.2020.03.27. [40] Wang M, Liu Z, Ali Baig M H, et al. Mapping sugarcane in complex landscapes by integrating multi-temporal Sentinel-2 images and machine learning algorithms[J]. Land Use Policy, 2019, 88:104190. [41] You N, Dong J. Examining earliest identifiable timing of crops using all available Sentinel 1/2 imagery and Google Earth Engine[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 161:109-123. [42] 国贤玉, 李坤, 王志勇, 等. 基于SVM+SFS策略的多时相紧致极化SAR水稻精细分类[J]. 自然资源遥感, 2018, 30(4):20-27.doi: 10.6046/gtzyyg.2018.04.04. [42] Guo X Y, Li K, Wang Z Y, et al. Fine classification of rice with multi-temporal compact polarimetric SAR based on SVM + SFS strategy[J]. Remote Sensing for Land and Resources, 2018, 30(4):20-27.doi: 10.6046/gtzyyg.2018.04.04. [43] Liu M, Liu J, Atzberger C, et al. Zanthoxylum bungeanum Maxim mapping with multi-temporal Sentinel-2 images:The importance of different features and consistency of results[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 174:68-86. [44] Waldner F, Chen Y, Lawes R, et al. Needle in a haystack:Mapping rare and infrequent crops using satellite imagery and data balancing methods[J]. Remote Sensing of Environment, 2019, 233:111375. [45] Mayes S, Massawe F, Alderson P, et al. The potential for underutilized crops to improve security of food production[J]. Journal of Experimental Botany, 2012, 63(3):1075-1079. [46] Tscharntke T, Clough Y, Wanger T C, et al. Global food security,biodiversity conservation and the future of agricultural intensification[J]. Biological Conservation, 2012, 151(1):53-59. [47] Wu F, Fang X, Meng Q, et al. Magneto- and litho-stratigraphic records of the Oligocene-Early Miocene climatic changes from deep drilling in the Linxia Basin,Northeast Tibetan Plateau[J]. Global and Planetary Change, 2017, 158:36-46. [48] 肖国举, 王静. 黄土高原集水农业研究进展[J]. 生态学报, 2003(5):1003-1011.[48] Xiao G J, Wang J. Research on progress of rainwater harvesting agriculture on the Loess Plateau of China[J]. Acta Ecologica Sinica, 2003(5):1003-1011.[49] Chen Y, Zhang C, Wang S, et al. Extracting crop spatial distribution from Gaofen 2 imagery using a convolutional neural network[J]. Applied Sciences, 2019, 9(14):2917. [50] 贾振华. 论临夏州花椒产业发展现状及对策[J]. 中国农业信息, 2014, 22:60-61.[50] Jia Z H. Discussion on the current situation and countermeasures of Zanthoxylum bungeanum industry[J]. China Agricultural Informatics, 2014, 22:60-61.[51] Tucker C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment, 1979, 8(2):127-150. [52] Carlson T N, Ripley D A. On the relation between NDVI,fractional vegetation cover,and leaf area index[J]. Remote Sensing of Environment, 1997, 62(3):241-252. [53] Zhu X, Liu D. Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015(102):222-231.[54] Yang F, Matsushita B, Fukushima T, et al. Temporal mixture analysis for estimating impervious surface area from multi-temporal MODIS NDVI data in Japan[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012(72):90-98.[55] Haralick R M, Shanmugam K, Dinstein I H. Textural features for image classification[J]. IEEE Transactions on Systems,Man,and Cybernetics, 1973(6):610-621.[56] Wood E M, Pidgeon A M, Radeloff V C, et al. Image texture as a remotely sensed measure of vegetation structure[J]. Remote Sensing of Environment, 2012(121):516-526.[57] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-32. [58] Hao P, Zhan Y, Wang L, et al. Feature selection of time series MODIS data for early crop classification using random forest:A case study in Kansas,USA[J]. Remote Sensing, 2015, 7(5):5347-5369. [59] Rodriguez-Galiano V F, Ghimire B, Rogan J, et al. An assessment of the effectiveness of a random forest classifier for land-cover classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012(67):93-104.[60] Foody G M. Status of land cover classification accuracy assessment[J]. Remote Sensing of Environment, 2002, 80(1):185-201. [61] Ifarraguerri A, Prairie M W. Visual method for spectral band selection[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(2):101-106. [62] Li G, Sun S, Han J, et al. Impacts of Chinese grain for green program and climate change on vegetation in the Loess Plateau during 1982—2015[J]. Science of the Total Environment, 2019, 660:177-187. [63] Li S, Yang S, Liu X, et al. NDVI-based analysis on the influence of climate change and human activities on vegetation restoration in the Shaanxi-Gansu-Ningxia Region,Central China[J]. Remote Sensing, 2015, 7(9):11163-11182. [64] Li J, Peng S, Li Z. Detecting and attributing vegetation changes on China’s Loess Plateau[J]. Agricultural and Forest Meteorology, 2017, 247:260-270. [65] Anwer R M, Khan F S, van de Weijer J, et al. Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 138:74-85. [66] Ferreira M P, Wagner F H, Aragao L E O C, et al. Tree species classification in tropical forests using visible to shortwave infrared WorldView-3 images and texture analysis[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 149:119-131. [67] Guo W, Rees W G. Altitudinal forest-tundra ecotone categorization using texture-based classification[J]. Remote Sensing of Environment, 2019, 232:111312. [68] Drusch M, Del Bello U, Carlier S, et al. Sentinel-2:ESA's optical high-resolution mission for GMES operational services[J]. Remote Sensing of Environment, 2012, 120:25-36. [69] Roy D P, Wulder M A, Loveland T R, et al. Landsat-8:Science and product vision for terrestrial global change research[J]. Remote Sensing of Environment, 2014, 145:154-172.
-
计量
- 文章访问数: 997
- PDF下载数: 64
- 施引文献: 0