Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index
-
摘要: 城市扩张是宜宾市近年来的主要特征,研究其对生态环境的影响,对城市发展与生态保护具有重要意义。为了更好地评价城市扩张对生态的影响,基于遥感生态指数(remote sensing ecological index, RSEI),构建归一化不透水面和裸土指数替代原有建筑指数作为干度指标,建立了改进型遥感生态指数(improved remote sensing ecological index, IRSEI),耦合对生态具有重要影响的绿度、湿度、温度及改进后的干度指标信息,利用主成分分析法及相关性对IRSEI进行了分析,建立基于IRSEI的宜宾市三江汇合区生态评价模型,对该地区20132020年间生态环境做出分析评价。结果表明: IRSEI能够更加精准地反映出干度对生态造成的负面影响,较RSEI在第一主成分分量中能够集中更多有用信息,对城市生态环境质量评测具有更好的适用性。2013年,该区域IRSEI为0.54,生态总体状况一般,原因在于城区扩张严重,破坏了原有植被; 2017年,IRSEI为0.67,退耕还林的持续推进以及城区生态的恢复,使得绿度明显上升,因此生态状况较2013年大为好转; 2020年,IRSEI为0.63,绿度、湿度以及干度基本与2013年持平,但由于城市扩张带来的热岛效应,温度较2017年有所上升,因此生态水平轻微下降。
-
关键词:
- 改进型遥感生态指数(IRSEI) /
- 主成分分析 /
- 相关性 /
- 宜宾三江汇合区 /
- 生态评价
Abstract: Urban expansion is the main characteristic of Yibin City in recent years, and the study of its impacts on ecology is significant for urban development and ecological protection. To assess the impacts of urban expansion on the ecology more accurately, this study established an improved remote sensing ecological index (IRSEI) by using the impervious surface area index as the dryness index to replace the original building index. The IRSEI coupled the improved dryness index and the indices greatly influencing the ecology, such as greenness, humidity, and temperature. This study analyzed the IRSEI using principal component analysis and correlation and established an IRSEI-based ecological assessment model of the three-river (i.e., the Jinsha River, Minjiang River, and Yangtze River) confluence in Yibin City. Then, this study analyzed and assessed the ecological environment of the confluence in 2013—2020. The results are as follows. The IRSEI can more accurately reflect the negative impacts of the dryness index on the ecology of the confluence. It can concentrate more useful information in the first principal component than the RSEI and can better apply to the quality assessment of urban ecological environment. In 2013, the IRSEI of the confluence was 0.54, indicating the moderate ecological status overall. The reason is that the original vegetation was destroyed by serious urban expansion. In 2017, the IRSEI was 0.67. The greenness was significantly improved by the continuous advancement of returning farmland to forests and the restoration of urban ecology, which is the reason that the ecology has greatly improved in 2017 compared to 2013. In 2020, the IRSEI was 0.63. The greenness, humidity, and dryness in 2020 were roughly the same as those in 2013, while the temperature rose in 2020 compared to 2017 due to the heat island effect induced by urban expansion. This is the reason for the slight decline in the ecological level in 2020. -
-
[1] Pauleit S, Ennos R, Golding Y. Modeling the environmental impacts of urban land use and land cover change:A study in Merseyside,UK[J]. Landscape and Urban Planning, 2005, 71(2-4):295-310. [2] Musse M A, Barona D A, Rodriguez L M S. Urban environmental quality assessment using remote sensing and census data[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 71(71):95-108. [3] 王瑶, 宫辉力, 李小娟. 基于GIS的北京市生态环境质量监测与分析[J]. 自然资源遥感, 2008, 20(1):94-99.doi: 10.6046/gtzyyg.2008.01.21. [3] Wang Y, Gong H L, Li X J. The monitoring and analysis of ecological environment quality of Beijing based on GIS[J]. Remote Sensing for Land and Resources, 2008, 20(1):94-99.doi: 10.6046/gtzyyg.2008.01.21. [4] 徐涵秋. 城市遥感生态指数的创建及其应用[J]. 生态学报, 2013, 33(24):7853-7862.[4] Xu H Q, A remote sensing urban ecological index and its application[J]. Acta Ecologica Sinica, 2013, 33(24):7853-7862.[5] 徐志刚, 郑鸿瑞, 戴晨曦, 等. 永定客家土楼世界遗产地土地覆盖与生态变化遥感评价[J]. 自然资源遥感, 2018, 30(1):102-108.doi: 10.6046/gtzyyg.2018.01.14. [5] Xu Z G, Zheng H R, Dai C X, et al. Evaluation of land cover and ecological change of Yongding Hakka Tulou World Heritage Protection Area using remote sensing image[J]. Remote Sensing for Land and Resources, 2018, 30(1):102-108.doi: 10.6046/gtzyyg.2018.01.14. [6] 木哈代思·艾日肯, 张飞, 刘康, 等. 基于天宫二号及Landsat8城镇生态环境现状评价[J]. 自然资源遥感, 2020, 32(4):209-218.doi: 10.6046/gtzyyg.2020.04.26. [6] Muhadaisi A, Zhang F, Liu K, et al. Urban ecological environment evaluation based on Tiangong-2 and Landsat8 data[J]. Remote Sensing for Land and Resources, 2020, 32(4):209-218.doi: 10.6046/gtzyyg.2020.04.26. [7] 罗春, 刘辉, 戚陆越. 基于遥感指数的生态变化评估——以常宁市为例[J]. 自然资源遥感, 2014, 26(4):145-150.doi: 10.6046/gtzyyg.2014.04.23. [7] Luo C, Liu H, Qi L Y. Ecological changes assessment based on remote sensing indices: A case study of Changning City[J]. Remote Sensing for Land and Resources, 2014, 26(4):145-150.doi: 10.6046/gtzyyg.2014.04.23. [8] Xu H. A new index for delineating built-up land features in satellite imagery[J]. International Journal of Remote Sensing, 2008, 29(14):4269-4276. [9] 徐涵秋. 一种基于指数的新型遥感建筑用地指数及其生态环境意义[J]. 遥感技术与应用, 2007, 22(3):301-308.[9] Xu H Q. A new index-based built-up index(IBI) and its eco-environmental significance[J]. Remote Sensing Technology and Application, 2007, 22(3):301-308.[10] Xu H Q. Analysis of impervious surface and its impact on urban heat environment using the normalized difference impervious surface index(NDISI)[J]. Photogrammetric Engineering and Remote Sensing, 2010, 76(5):557-565. [11] Rikimaru A, Roy P S, Miyatake S. Tropical forest cover density mapping[J]. Tropical Ecology, 2002, 43(1):39-47.[12] Xu H Q. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006, 27(12/14):3025-3033. [13] 程志峰, 何祺胜. 基于RSEI的苏锡常城市群生态环境遥感评价[J]. 遥感技术与应用, 2019, 34(3):531-539.[13] Cheng Z F, He Q S. Remote sensing evaluation of the ecological environment of Su-Xi-Chang city group based on remote sensing ecological index (RSEI)[J]. Remote Sensing Technology and Application, 2019, 34(3):531-539.[14] Chander G, Markham B. Revised Landsat-5 TM radiometric calibration procedures and post calibration dynamic ranges[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(11):2674-2677. [15] 覃志豪, 李文娟, 徐斌, 等. 2004, 陆地卫星TM6波段范围内地表比辐射率的估计[J]. 自然资源遥感, 16(3):28-32, 36,41.doi: 10.6046/gtzyyg.2004.03.07. [15] Qin Z H, Li W J, Xu B, et al. The estimation of land surface emissivity for Landsat TM6[J]. Remote Sensing for Land and Resources, 2004, 16(3):28-32,36,41.doi: 10.6046/gtzyyg.2004.03.07. [16] 杨永健. 基于遥感生态指数的生态质量变化分析[D]. 西安:长安大学, 2019.[16] Yang Y J. Ecological quality assessment based on remote sensing ecological index:A case study of Fujian Province[D]. Xi’an:Chang’an University, 2019.[17] Zha Y, Gao J, Ni S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery[J]. International Journal of Remote Sensing, 2003, 24(3):583-594. [18] 徐涵秋, 王美雅. 地表不透水面信息遥感的主要方法分析[J]. 遥感学报, 2016, 20(5):1270-1289.[18] Xu H Q, Wang M Y. Remote sensing-based retrieval of ground impervious surfaces[J]. Journal of Remote Sensing, 2016, 20(5):1270-1289.[19] 刘畅, 杨康, 程亮, 等. Landsat8不透水面遥感信息提取方法对比[J]. 自然资源遥感, 2019, 31(3):148-156.doi: 10.6046/gtzyyg.2019.03.19. [19] Liu C, Yang K, Cheng L, et al. Comparison of Landsat8 impervious surface extraction methods[J]. Remote Sensing for Land and Resources, 2019, 31(3):148-156.doi: 10.6046/gtzyyg.2019.03.19. [20] 林冬凤, 徐涵秋. 厦门城市不透水面及其热环境效应的遥感分析[J]. 亚热带资源与环境学报, 2013, 8(3):78-84.
[20] Lin D F, Xu H Q. Urban impervious surface and its effects on thermal environments in Xiamen:An analysis based on remote sensing technology[J]. Journal of Subtropical Resources and Environment, 2013, 8(3):78-84.
-
计量
- 文章访问数: 836
- PDF下载数: 68
- 施引文献: 0