中国自然资源航空物探遥感中心主办
地质出版社出版

基于深度学习语义分割模型的高分辨率遥感图像水体提取

沈骏翱, 马梦婷, 宋致远, 柳汀洲, 张微. 2022. 基于深度学习语义分割模型的高分辨率遥感图像水体提取. 自然资源遥感, 34(4): 129-135. doi: 10.6046/zrzyyg.2021357
引用本文: 沈骏翱, 马梦婷, 宋致远, 柳汀洲, 张微. 2022. 基于深度学习语义分割模型的高分辨率遥感图像水体提取. 自然资源遥感, 34(4): 129-135. doi: 10.6046/zrzyyg.2021357
SHEN Jun’ao, MA Mengting, SONG Zhiyuan, LIU Tingzhou, ZHANG Wei. 2022. Water information extraction from high-resolution remote sensing images using the deep-learning based semantic segmentation model. Remote Sensing for Natural Resources, 34(4): 129-135. doi: 10.6046/zrzyyg.2021357
Citation: SHEN Jun’ao, MA Mengting, SONG Zhiyuan, LIU Tingzhou, ZHANG Wei. 2022. Water information extraction from high-resolution remote sensing images using the deep-learning based semantic segmentation model. Remote Sensing for Natural Resources, 34(4): 129-135. doi: 10.6046/zrzyyg.2021357

基于深度学习语义分割模型的高分辨率遥感图像水体提取

  • 基金项目:

    浙江省重点研发计划项目“基于大数据的时空信息平台系统建设”(2021C01031)

    宁波市自然科学基金项目“基于时空大数据和AIoT技术的污泥专运溯源管理系统研发与应用”(2022S125)

详细信息
    作者简介: 沈骏翱(1997-),男,硕士研究生,研究方向为遥感影像深度学习分析。Email: 22051094@zju.edu.cn
  • 中图分类号: TP75

Water information extraction from high-resolution remote sensing images using the deep-learning based semantic segmentation model

  • 水体提取是高空间分辨率遥感影像应用中重要研究方向之一。传统识别方法仅利用水体的浅层特征,为了更好地挖掘遥感影像的深度信息,从而提升水体提取算法的鲁棒性,提高分割精度,提出了一种基于深度学习语义分割模型的水体提取方法。利用深度神经网络挖掘高分辨率遥感影像信息,同时引入注意力模块,整合深层信息与浅层地物的形状、结构、纹理和色调等信息,拟建立比现有模型具有更高准确率、更快预测速度的全新深度语义分割模型。最后,和传统识别方法以及常见语义分割模型进行对比消融实验。实验证明所提出算法模型的总体精度和效率均优于现有方法,且算法参数设置简单,受人工干预少。文章证明了深度学习以及注意力机制在高分辨率遥感影像水体提取任务上的准确性和高效性,提供了一种使用深度学习方法解决高分辨率遥感影像分割任务的可能,并对未来进行了展望。
  • 加载中
  • [1]

    方涛, 霍宏, 马贺平. 高分辨率遥感影像智能解译[M]. 北京: 科学出版社, 2016:18-25.

    [2]

    Fang T, Huo H, Ma H P. Intelligent interpretation of high resolution remote sensing image[M]. Beijing: Science Press, 2016:18-25.

    [3]

    Deng F L. Research on multi-level segmentation method and application of high resolution remote sensing image[D]. Beijing: University of Chinese Academy of Sciences, 2013.

    [4]

    Work E A, Gilmer D S. Utilization of satellite data for inventorying prairie ponds and lakes[J]. Photogrammetric Engineering and Remote Sensing, 1976, 42(5):685-694.

    [5]

    Frazier P S, Page K J. Water body detection and delineation with Landsat TM data[J]. Photogrammetric Engineering and Remote Sensing, 2000, 66(12):1461-1468.

    [6]

    McFeeters S K. The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7):1425-1432.

    [7]

    Kaufman Y J, Tanre D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2):261-270.

    [8]

    Xu H Q. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. Journal of Remote Sensing, 2005, 9(5):589-595.

    [9]

    Lecun Y L, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.

    [10]

    Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25(2):1097-1105.

    [11]

    He K, Gkioxari G, Dollár P, et al. Mask R-CNN[C]// Proceedings of the IEEE International Conference on Computer Vision, 2017:2961-2969.

    [12]

    Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015:3431-3440.

    [13]

    许玥. 基于改进Unet的遥感影像语义分割在地表水体变迁中的应用[D]. 重庆: 重庆师范大学, 2019.

    [14]

    Xu Y. Application of semantic segmentation of remote sensing image based on improved Unet in surface water changes[D]. Chongqing: Chongqing Normal University, 2019.

    [15]

    Ying X, Wang Q, Li X, et al. Multi-attention object detection model in remote sensing images based on multi-scale[J]. IEEE Access, 2019, 7:94508-94519.

    [16]

    He N, Fang L, Plaza A. Hybrid first and second order attention U-net for building segmentation in remote sensing images[J]. Science China Information Sciences, 2020, 63(4):1-12.

    [17]

    Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3):273-297.

    [18]

    Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.

    [19]

    Zhang X, Xiao P, Feng X, et al. Toward evaluating multiscale segmentations of high spatial resolution remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7):3694-3706.

    [20]

    Chen L C, Papandreou G, Kokkinos I, et al. Deeplab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4):834-848.

    [21]

    Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:2881-2890.

    [22]

    Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham:Springer, 2015:234-241.

  • 加载中
计量
  • 文章访问数:  1809
  • PDF下载数:  226
  • 施引文献:  0
出版历程
收稿日期:  2021-10-25
修回日期:  2022-12-15
刊出日期:  2022-12-27

目录