中国自然资源航空物探遥感中心主办
地质出版社出版

基于LSTM-CA模型的土地利用动态模拟

刘春霖, 夏建新. 2022. 基于LSTM-CA模型的土地利用动态模拟. 自然资源遥感, 34(4): 122-128. doi: 10.6046/zrzyyg.2021375
引用本文: 刘春霖, 夏建新. 2022. 基于LSTM-CA模型的土地利用动态模拟. 自然资源遥感, 34(4): 122-128. doi: 10.6046/zrzyyg.2021375
LIU Chunlin, XIA Jianxin. 2022. Dynamic simulation of land use based on the LSTM-CA model. Remote Sensing for Natural Resources, 34(4): 122-128. doi: 10.6046/zrzyyg.2021375
Citation: LIU Chunlin, XIA Jianxin. 2022. Dynamic simulation of land use based on the LSTM-CA model. Remote Sensing for Natural Resources, 34(4): 122-128. doi: 10.6046/zrzyyg.2021375

基于LSTM-CA模型的土地利用动态模拟

详细信息
    作者简介: 刘春霖(1989-),男,博士研究生,主要从事遥感在生态环境保护方面的研究和应用。Email: 344018735@qq.com
  • 中图分类号: TP79

Dynamic simulation of land use based on the LSTM-CA model

  • 及时准确获取土地利用空间格局演变规律,能够有效为城市生态环境保护和科学管理提供依据。文章利用卷积神经网络提取多个时期土地利用空间特征,结合多种空间驱动因子建立长短时记忆网络(long short term memory network,LSTM)的元胞自动机(cellular automata,CA)模型(LSTM-CA)。以张家口市中心城区1995年、2000年、2005年、2010年及2015年5期时序土地利用分类、地形及城市交通等数据为基础,开展2020年城市土地利用模拟方法研究。通过与多层感知机(multi-layer perceptron,MLP)的CA模型(MLP-CA)进行精度对比分析,结果表明所提方法Kappa系数达到0.90,FoM指标为0.39,各项指标均优于MLP-CA模型, LSTM-CA更能充分挖掘历史土地利用变化之间的内在关系,可以有效提升模拟精度。
  • 加载中
  • [1]

    廖江福, 唐立娜, 王翠平, 等. 城市元胞自动机扩展邻域效应的测量与校准研究[J]. 地理科学进展, 2014, 33(12):1624-1633.

    [2]

    Liao J F, Tang L N, Wang C P, et al. Measuring and calibrating extended neighborhood effect of urban cellular automata model based on particle swam optimization[J]. Progress in Geography, 2014, 33(12):1624-1633.

    [3]

    陈宝芬, 张耀民, 江东. 基于CA-ABM模型的福州城市用地扩张研究[J]. 地理科学进展, 2017, 36(5):626-634.

    [4]

    Chen B F, Zhang Y M, Jiang D. Urban land expansion in Fuzhou City based on coupled cellular automata and agent-based models (CA-ABM)[J]. Progress in Geography, 2017, 36(5):626-634.

    [5]

    孙毅中, 杨静, 宋书颖, 等. 多层次矢量元胞自动机建模及土地利用变化模拟[J]. 地理学报, 2020, 75(10):2164-2179.

    [6]

    Sun Y Z, Yang J, Song S Y, et al. Modeling of multi-level vector cellular automata and its simulation of land use change based on urban planning[J]. Acta Geographica Sinica, 2020, 75(10):2164-2179.

    [7]

    田洁玫, 陈杰. 高标准粮田区鹤壁市土地利用情景模拟预测研究[J]. 国土资源遥感, 2018, 30(1):150-156.doi:10.6046/gtzyyg.2018.01.21.

    [8]

    Tian J M, Chen J. Simulation and prediction of land use in the high standrad grain area of Hebi City[J]. Remote Sensing for Land and Resources, 2018, 30(1):150-156.doi:10.6046/gtzyyg.2018.01.21.

    [9]

    杨俊, 解鹏, 席建超, 等. 基于元胞自动机模型的土地利用变化模拟——以大连经济技术开发区为例[J]. 地理学报, 2015, 70(3):461-475.

    [10]

    Yang J, Xie P, Xi J C, et al. LUCC simulation based on the cellular automata simulation:A case study of Dalian Economic and Technological Development Zone[J]. Acta Geographica Sinica, 2015, 70(3):461-475.

    [11]

    张大川, 刘小平, 姚尧, 等. 基于随机森林CA的东莞市多类土地利用变化模拟[J]. 地理与地理信息科学, 2016, 32(5):29-36.

    [12]

    Zhang D C, Liu X P, Yao Y, et al. Simulating spatiotemporal change of multiple land use types in Dongguan by using random forest based on cellular automata[J]. Geography and Geo-Information Science, 2016, 32(5):29-36.

    [13]

    Xing W, Qian Y, Guan X, et al. A novel cellular automata model integrated with deep learning for dynamic spatio-temporal land use change simulation[J]. Computers and Geosciences, 2020, 137(1):1-9.

    [14]

    Von Neumann J. Theory of self-reproducing automata[J]. London:University of Illinois Press, 1966:3-14.

    [15]

    Karimi F, Sultana S, Babakan A S, et al. An enhanced support vector machine model for urban expansion prediction[J]. Computers,Environment and Urban Systems, 2019, 75(1):61-75.

    [16]

    Shafizadeh-Moghadam H, Asghari A, Tayyebi A, et al. Coupling machine learning,tree-based and statistical models with cellular automata to simulate urban growth[J]. Computers,Environment and Urban Systems, 2017, 64(1):297-308.

    [17]

    He J, Li X, Yao Y, et al. Mining transition rules of cellular automata for simulating urban expansion by using the deep learning techniques[J]. International Journal of Geographical Information Science, 2018, 32(10):2076-2097.

    [18]

    Gounaridis D, Chorianopoulos I, Symeonakis E, et al. A random forest-cellular automata modelling approach to explore future land use/cover change in Attica (Greece),under different socio-economic realities and scales[J]. Science of the Total Environment, 2019, 64(6):320-335.

    [19]

    Grekousis G. Artificial neural networks and deep learning in urban geography:A systematic review and meta-analysis[J]. Computers,Environment and Urban Systems, 2019, 74(1):244-256.

    [20]

    Guan D, Zhao Z, Tan J. Dynamic simulation of land use change based on logistic-CA-Markov and WLC-CA-Markov models:A case study in three gorges reservoir area of Chongqing,China[J]. Environmental Science and Pollution Research, 2019, 26(20):20669-20688.

    [21]

    Jia X, Khandelwal A, Nayak G, et al. Incremental dual-memory lstm in land cover prediction[C]// Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, 2017:867-876.

    [22]

    Wang H, Zhao X, Zhang X, et al. Long time series land cover classification in China from 1982 to 2015 based on Bi-LSTM deep learning[J]. Remote Sensing, 2019, 11(14):1-22.

    [23]

    White R, Engelen G. Cellular automata and fractal urban form:A cellular modelling approach to the evolution of urban land-use patterns[J]. Environment and Planning A, 1993, 25(8):1175-1199.

    [24]

    Liu X, Liang X, Li X, et al. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects[J]. Landscape and Urban Planning, 2017, 168(1):94-116.

  • 加载中
计量
  • 文章访问数:  954
  • PDF下载数:  140
  • 施引文献:  0
出版历程
收稿日期:  2021-11-05
修回日期:  2022-12-15
刊出日期:  2022-12-27

目录