中国自然资源航空物探遥感中心主办
地质出版社出版

机载LiDAR技术在缓倾地层滑坡及其拉裂槽识别中的应用

贺鹏, 颜瑜严, 文艳, 马志刚, 焦其松, 郭兆成, 莫悠. 2022. 机载LiDAR技术在缓倾地层滑坡及其拉裂槽识别中的应用. 自然资源遥感, 34(4): 307-316. doi: 10.6046/zrzyyg.2021360
引用本文: 贺鹏, 颜瑜严, 文艳, 马志刚, 焦其松, 郭兆成, 莫悠. 2022. 机载LiDAR技术在缓倾地层滑坡及其拉裂槽识别中的应用. 自然资源遥感, 34(4): 307-316. doi: 10.6046/zrzyyg.2021360
HE Peng, YAN Yuyan, WEN Yan, MA Zhigang, JIAO Qisong, GUO Zhaocheng, MO You. 2022. Application of the airborne LiDAR technology in the identification of flat landslides and their crack grooves. Remote Sensing for Natural Resources, 34(4): 307-316. doi: 10.6046/zrzyyg.2021360
Citation: HE Peng, YAN Yuyan, WEN Yan, MA Zhigang, JIAO Qisong, GUO Zhaocheng, MO You. 2022. Application of the airborne LiDAR technology in the identification of flat landslides and their crack grooves. Remote Sensing for Natural Resources, 34(4): 307-316. doi: 10.6046/zrzyyg.2021360

机载LiDAR技术在缓倾地层滑坡及其拉裂槽识别中的应用

  • 基金项目:

    四川省自然资源厅地质灾害调查项目“四川省地质灾害隐患遥感识别监测(2021年)”(510201202110324)

    “四川省地质灾害隐患遥感识别监测(2020年)”(510201202076888)

详细信息
    作者简介: 贺 鹏(1986-),男,博士,工程师,主要从事环境地质、地质灾害遥感研究工作。Email: hepeng@mail.cgs.gov.cn
  • 中图分类号: P694

Application of the airborne LiDAR technology in the identification of flat landslides and their crack grooves

  • 缓倾地层滑坡是我国西南地区常见的一种特殊灾害类型,拉裂槽为其典型识别标志。由于灾害源区植被茂密、地形复杂,常规地面调查或遥感手段均存在局限性,较难高效、有效地对其进行识别提取。作为新兴遥感技术之一的机载激光雷达(light detection and ranging, LiDAR)技术及其数据可视化分析方法为缓倾地层滑坡的准确识别提供了新的解决方案。利用无人机搭载长测程LiDAR可获取高分辨率数字高程模型,结合空天视域因子、系列山体阴影图和三维形态模拟等多种可视化方法,可实现缓倾地层滑坡及其拉裂槽的有效识别。文章以四川省北部通江县春在镇周边作为研究区,选取糯鼓寨村南部新识别滑坡隐患作为典型案例,利用综合遥感识别方法,实现基于机载LiDAR数据的滑坡隐患识别标志构建、边界准确判识、拉裂槽位置识别及信息提取,结合野外核查验证结果,从定性和定量2个方面验证机载LiDAR技术对高植被区缓倾地层滑坡及其拉裂槽识别应用的有效性。相关研究结果对缓倾地层滑坡多发区的灾害隐患早期识别、监测及防治领域应用研究具一定的参考和借鉴价值。
  • 加载中
  • [1]

    王治华, 杜明亮, 郭兆成, 等. 缓倾地层滑坡地质力学模型研究——以冯店滑坡为例[J]. 地质力学学报, 2012, 18(2):97-109,186.

    [2]

    Wang Z H, Du M L, Guo Z C, et al. Molybdenite re-os isotopic dating of sangbujiala copper deposit in the south margin of the eastern Gangdese section,Xizang,and its geological implications[J]. Journal of Geomechanics, 2012, 18(2):97-109,186.

    [3]

    方贻立, 马明, 李聪, 等. 平推式滑坡致灾机理与减灾方法研究进展[J]. 长江科学院院报, 2013, 30(12):20-27.

    [4]

    Fang Y L, Ma M, Li C, et al. Research advances in translational landslide’s mechanism and risk mitigation[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(12):20-27.

    [5]

    张明, 胡瑞林, 殷跃平, 等. 川东缓倾红层中降雨诱发型滑坡机制研究[J]. 岩石力学与工程学报, 2014, 33(s2):3783-3790.

    [6]

    Zhang M, Hu R L, Yin Y P, et al. Study of mechanism of landslide induced by rainfall in gently inclined red stratum in east Sichuan basin[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(s2):3783-3790.

    [7]

    张倬元, 王士天, 王兰生. 工程地质分析原理[M]. 北京: 地质出版社, 1994:377-380.

    [8]

    Zhang Z Y, Wang S T, Wang L S. Principles of engineering geological analysis[M]. Beijing: Geological Publishing House, 1994:377-380.

    [9]

    吉随旺, 张倬元, 王凌云, 等. 近水平软硬互层斜坡变形破坏机制[J]. 中国地质灾害与防治学报, 2000(3):52-55.

    [10]

    Ji S W, Zhang Z Y, Wang L Y, et al. The mechanism of deformation and failure for the slope composed of nearly horizontal competent and incompetent intercalated rock mass strata[J]. Chinese Journal of Geological Hazards and Prevention, 2000(3):52-55.

    [11]

    黄润秋, 赵松江, 宋肖冰, 等. 四川省宣汉县天台乡滑坡形成过程和机理分析[J]. 水文地质工程地质, 2005(1):13-15.

    [12]

    Huang R Q, Zhao S J, Song X B, et al. The formation and mechanism analysis of Tiantai landslide,Xuanhan County,Sichuan Province[J]. Hydrogeology and Engineering Geology, 2005(1):13-15.

    [13]

    成国文, 李善涛, 李晓, 等. 万州近水平地层区堆积层滑坡成因与变形破坏特征[J]. 工程地质学报, 2008(3):17-23.

    [14]

    Cheng G W, Li S T, Li X, et al. Forming causes and deformation-destruction characters of accumulative stratum landslide in horizontal stratum in Wanzhou[J]. Hydrogeology and Engineering Geology, 2008(3):17-23.

    [15]

    Du Y, Xie M W, Jia J L. Stepped settlement: A possible mechanism for translational landslides[J]. Catena, 2020, 187:104365.

    [16]

    杜岩, 谢谟文, 吴志祥, 等. 平推式滑坡成因机制及其稳定性评价[J]. 岩石力学与工程学报, 2019, 38(s1):2871-2880.

    [17]

    Du Y, Xie M W, Wu Z X, et al. Genetic mechanism about translational landslide and its safety evaluation[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(s1):2871-2880.

    [18]

    Juan J S, Xue L,Wang, H Y, et al. Effects of the attitude of dominant joints on the mobility of translational landslides[J]. Landslides, 2021, 18:2483-2498.

    [19]

    Santangelo M, Cardinali M, Rossi M, et al. Remote landslide mapping using a laser rangefinder binocular and GPS[J]. Natural Hazards and Earth System Sciences, 2010, 10(12): 2539-2546.

    [20]

    许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版), 2019, 44(7):957-966.

    [21]

    Xu Q, Dong X J, Li W L. Integrated space-air-ground early detection,monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):957-966.

    [22]

    许强, 李为乐, 董秀军, 等. 四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J]. 岩石力学与工程学报, 2017, 36(11):2612-2628.

    [23]

    Xu Q, Li W L, Dong X J, et al. The Xinmocun landslide on June 24,2017 in Maoxian,Sichuan: Characteristics and failure mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11):2612-2628.

    [24]

    IPCC. Climate change 2021:The physical science basis[M]. Cambridge: Cambridge University Press, 2021: 5-31.

    [25]

    张小红. 机载激光雷达测量技术理论与方法[M]. 武汉: 武汉大学出版社, 2007: 16-25.

    [26]

    Zhang X H. Airborne laser Radar technology theory and methods of measurement[M]. Wuhan: Wuhan University Press, 2007:16-25.

    [27]

    McKean J, Roering J. Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry[J]. Geomorphology, 2004, 57(3-4): 331-351.

    [28]

    Michel J, Thierry O, Antonio A, et al. Use of LIDAR in landslide investigations:A review[J]. Natural Hazards, 2012, 61(1):5-28.

    [29]

    马晓雪, 吴中海, 李家存. LiDAR技术在地质环境中的主要应用与展望[J]. 地质力学学报, 2016, 22(1):93-103.

    [30]

    Ma X X, Wu Z H, Li J C. LiDAR technology and its application and prospect in geological environment[J]. Journal of Geomechanics, 2016, 22(1):93-103.

    [31]

    任治坤, 陈涛, 张会平, 等. LiDAR技术在活动构造研究中的应用[J]. 地质学报, 2014, 88(6):1196-1207.

    [32]

    Ren Z K, Chen T, Zhang H P, et al. LiDAR survey in active tectonics studies:An introduction and overview[J]. Acta Geologica Sinica, 2014, 88(6):1196-1207.

    [33]

    李占飞, 刘静, 邵延秀, 等. 基于LiDAR的海原断裂松山段断错地貌分析与古地震探槽选址实例[J]. 地质通报, 2016, 35(1):104-116.

    [34]

    Li Z F, Liu J, Shao Y X, et al. Tecto-geomorphic analysis and selection of trench sites along Haiyuan fault in Songshan site based on high-resolution airbone LiDAR data[J]. Geological Bulletin of China, 2016, 35(1):104-116.

    [35]

    肖春蕾, 郭兆成, 郑雄伟, 等. 机载LiDAR技术在地质调查领域中的几个典型应用[J]. 国土资源遥感, 2016, 28(1):136-143.doi:10.6046/gtzyyg.2016.01.20.

    [36]

    Xiao C L, Guo Z C, Zheng X W, et al. Typical applications of airborne LiDAR technique in geological investigation[J]. Remote Sensing for Land and Resources, 2016, 28(1):136-143.doi:10.6046/gtzyyg.2016.01.20.

    [37]

    郭晨, 许强, 董秀军, 等. 复杂山区地质灾害机载激光雷达识别研究[J]. 武汉大学学报(信息科学版), 2021, 46(10):1538-1547.

    [38]

    Guo C, Xu Q, Dong X J, et al. Geohazard recognition by airborne LiDAR technology in complex mountain areas[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10):1538-1547.

    [39]

    沈开俊, 刘严松. 四川通江县地质灾害特征及影响因素分析[J]. 四川地质学报, 2010, 30(4):465-467,481.

    [40]

    Shen K J, Liu Y S. Geological hazards and their influence factors in Tongjiang,Sichuan[J]. Acta Geologica Sichuan, 2010, 30(4):465-467,481.

    [41]

    张涛, 谢忠胜, 石胜伟, 等. 川东红层缓倾岩质滑坡的演化过程及其识别标志探讨[J]. 工程地质学报, 2017, 25(2):496-503.

    [42]

    Zhang T, Xie Z S, Shi S W, et al. Discussion on evolution process of flat rock landslide and its identification in red strata at eastern Sichuan[J]. Journal of Engineering Geology, 2017, 25(2):496-503.

  • 加载中
计量
  • 文章访问数:  723
  • PDF下载数:  106
  • 施引文献:  0
出版历程
收稿日期:  2021-11-01
修回日期:  2022-12-15
刊出日期:  2022-12-27

目录