中国自然资源航空物探遥感中心主办
地质出版社出版

基于遥感技术沙特阿拉伯地区钙结岩型铀矿成矿要素识别及潜力评价

郭帮杰, 潘蔚, 张闯. 2022. 基于遥感技术沙特阿拉伯地区钙结岩型铀矿成矿要素识别及潜力评价. 自然资源遥感, 34(4): 299-306. doi: 10.6046/zrzyyg.2021373
引用本文: 郭帮杰, 潘蔚, 张闯. 2022. 基于遥感技术沙特阿拉伯地区钙结岩型铀矿成矿要素识别及潜力评价. 自然资源遥感, 34(4): 299-306. doi: 10.6046/zrzyyg.2021373
GUO Bangjie, PAN Wei, ZHANG Chuang. 2022. Remote sensing-based identification and potential evaluation of the mineralization elements of calcrete-hosted uranium deposits in Saudi Arabia. Remote Sensing for Natural Resources, 34(4): 299-306. doi: 10.6046/zrzyyg.2021373
Citation: GUO Bangjie, PAN Wei, ZHANG Chuang. 2022. Remote sensing-based identification and potential evaluation of the mineralization elements of calcrete-hosted uranium deposits in Saudi Arabia. Remote Sensing for Natural Resources, 34(4): 299-306. doi: 10.6046/zrzyyg.2021373

基于遥感技术沙特阿拉伯地区钙结岩型铀矿成矿要素识别及潜力评价

  • 基金项目:

    国防科工局核能开发项目“基于航空高光谱与伽玛能谱的铀矿勘查技术研究”([2021]88)

    “塔里木巨型复合盆地砂岩铀矿预测评价技术与资源突破方向研究”(地HTLM2101)

详细信息
    作者简介: 郭帮杰(1988-),男,博士,高级工程师,主要从事遥感地质学及铀矿地质研究。Email: 695483383@qq.com
  • 中图分类号: P627

Remote sensing-based identification and potential evaluation of the mineralization elements of calcrete-hosted uranium deposits in Saudi Arabia

  • 为研究沙特阿拉伯地区钙结岩型铀矿成矿要素识别及潜力评价,以中沙铀矿勘查项目中的钙结岩型铀矿勘查为例,利用ASTER等卫星遥感数据和数字高程模型(digital elevation model,DEM)数据,采取目视判别、水文分析和主成分分析等方法,应用辅助铀源评价、补-径-排体系划分和含矿母岩识别等技术,对比分析了3个钙结岩区铀成矿条件。结果显示,片区2的铀源和补-径-排等铀成矿条件最完善,片区1缺乏良好的沉积盆地作为排泄区,片区3缺乏良好的铀源。研究表明: 补-径-排体系的完整性对钙结岩型铀矿的成矿作用至关重要,缺一不可,且优质的铀源和沉积环境利于形成大规模的钙结岩型铀矿; 铀元素富集累积时间的长短直接影响钙结岩型铀矿的规模大小; 沙特阿拉伯研究区内钙结岩型铀矿成矿的有利沉积环境为周边有大片铀源的蒸发型湖(干盐湖)相沉积。研究结果可为在类似地区寻找钙结岩型铀矿提供重要参考。
  • 加载中
  • [1]

    余达淦, 吴仁贵, 陈培荣. 铀资源地质学[M]. 哈尔滨: 哈尔滨工程大学出版社, 2004.

    [2]

    Yu D G, Wu R G, Chen P R. Uranium geology[M]. Harbin: Harbin Engineering University Press, 2004.

    [3]

    Butt C R M, Mann A W, Horwitz R C. Regional setting,distribution and genesis of surficial uraniumdeposits in calcretes and associates sediments in western Australia[C]// Surficial Uranium Deposits,IAEA TECDOC-322.IAEA,Vienna, 1984:121-127.

    [4]

    Subhash J, Ian C R, Evgeniy B, et al. Basin-related uranium mineral systems in Australia:A review of critical features[J]. Ore Geo-logy Reviews, 2015, 76:360-394.

    [5]

    Carlisle D. Concentration of uranium and vanadium in calcretes and gypcretes[J]. Geological Society, 1983, 11:185-195.

    [6]

    Arakel A V. Carnotite mineralization in inland drainage areas of Australia[J]. Ore Geology Reviews, 1988, 3 (1-3):289-311.

    [7]

    Bowell R J, Booysens M, Pedley A, et al. Characterization of carnotite uranium deposit in Calcrete Channels,Trekkopje,Namibia[C]// Proceedings of Africa Uncovered:Mineral Resources for the Future,SEG-GSSA Conference, 2008:114-121.

    [8]

    Hou B, Fabris, A J, Keeling, J L, et al. Cainozoic palaeochannels hosted uranium and current exploration methods,South Australia[J]. MESA Journal, 2007(46):34-39.

    [9]

    车永飞, 张云龙, 赵英俊, 等. 航空γ能谱测量数据在西澳伊尔岗地区钙结岩型铀矿勘查中的应用[J]. 铀矿地质, 2015, 31(1):44-51.

    [10]

    Che Y F, Zhang Y L, Zhao Y J, et al. Application of airborne spectrometry data to the exploration of calcrete-hosted uranium deposit in Yilgarn area western Australia[J]. Uranium Geology, 2015, 31(1): 44-51.

    [11]

    顾大钊, 许志斌, 范洪海, 等. 纳米比亚不同类型铀矿床成因初探[J]. 矿产勘查, 2015, 6(4):471-477.

    [12]

    Gu D Z, Xu Z B, Fan H H, et al. Discussion of deposit genesis of different types of uranium deposits in Namibia[J]. Mineral Exploration, 2015, 6(4):471-477.

    [13]

    李克让. 西北地区钙结岩(膏结岩)特征及铀成矿条件初析[J]. 铀矿地质, 1988, 4(1):14-18.

    [14]

    Li K R. The characteristics of calcrete(Gypcrete) and a preliminary analysis of uranium ore forming conditions in northwest district of China[J]. Uranium Geology, 1988, 4(1):14-18.

    [15]

    李克让. 西北钙(膏)结岩型铀矿化特征和成矿条件[J]. 华东地质学院学报, 1990, 13(2):24-30.

    [16]

    Li K R. Feature of uranium mineralization and mineral-formation condition of callche type in Northwest[J]. Journal of East China Institute of Technology, 1990, 13(2): 24-30.

    [17]

    Fares H, Philip G, Abdulaty S. Metallogenic evolution of uranium deposits in the middle east and north Africa deposits[J]. Journal of African Earth Sciences, 2016, 114: 30-42.

    [18]

    Rishikesh B, Kalimuthu R, Ramakrishnan D. Spectral pathways for exploration of secondary uranium:An investigation in the desertic tracts of Rajasthan and Gujarat,India[J]. Advances in Space Research, 2015, 56:1613-1626.

    [19]

    Johnson, P R. Explanatory notes to the map of proterozoic geology of western Saudi Arabia[R]. Saudi Geological Survey Technical Report SGS-TR-2006-4, 2006:62.

    [20]

    Al-Anazi E, Al-Saleh A. Surface dispersion of uranium in the Al-Hayt area,NE Arabian shield[J]. Journal of Environmental Radioactivity, 2013, 124:214-226.

    [21]

    Quick J E, Doebrich J L. Geologic map of the Wadi Ash Shu’bah Quadrangle,sheet 26E,kingdom of Saudi Arabia(Scale 1:250 000,with text)[M]. Saudi Arabian Deputy Ministry for MineralResources Geoscience Map GM 108C, 1986:23.

    [22]

    娄峰, 李宏卫, 陈光明, 等. 花岗岩演化与铀钍元素富集的关系: 以粤北贵东岩体为例[J]. 地学前缘, 2011, 18(1): 110-117.

    [23]

    Lou F, Li H W, Chen G M, et al. The relationship between granite evolution and uranium thorium enrichment:An example from the Guidong granite body,north Guangdong Province[J]. Earth Science Frontiers, 2011, 18(1):110-117.

    [24]

    叶发旺. ASTER数据与ETM数据蚀变信息提取的对比研究——以巴什布拉克铀矿区油气还原蚀变分析为例[J]. 地球信息科学学报, 2009, 11(3):274-281.

    [25]

    Ye F W. Discussion on applicational comparison between new type of multi-spectral ASTER data and ETM+data:A case study on extracting the reduced alteration information of gas and oil in Bashibulake uranium ore district[J]. Journal of Geo-Information Science, 2009, 11(3):274-281.

    [26]

    王俊虎, 张杰林, 张静波. 基于ASTER热红外数据的SiO2含量反演在某矿田信息提取中的应用[J]. 铀矿地质, 2010, 26(1): 306-311.

    [27]

    Wang J H, Zhang J L, Zhang J B, et al. SiO2 content retrieving based on ASTER thermal data and its application in substracting metallogenic factor of a uranium deposit[J]. Uranium Geology, 2010, 26(1):306-311.

    [28]

    唐淑兰, 曹建农, 王国强, 等. 结合小波包变换和随机森林的ASTER蚀变信息提取[J]. 地质学报, 2021, 95(3): 924-933.

    [29]

    Tang S L, Cao J N, Wang G Q, et al. Aster alteration information extraction based on wavelet packet transform and random forest[J]. Acta Geologica Sinica, 2021, 95(3): 924-933.

    [30]

    韩海辉, 王艺霖, 张转, 等. 东昆仑浅覆盖区遥感蚀变异常提取与分析[J]. 遥感信息, 2018, 33(4): 72-79.

    [31]

    Han H H, Wang Y L, Zhang Z, et al. Extraction and analysis of remote sensing alteration anomaly at shallow loess covering area in East Kunlun[J]. Remote Sensing Information, 2018, 33(4): 72-79.

    [32]

    鲁立辉, 许荣科, 郑有业, 等. 基于OLI和ASTER数据的蚀变信息提取分析与对比——以青海都兰通突尔铅锌多金属矿区为例[J]. 地质与勘探, 2019, 55(2): 600-607.

    [33]

    Lu L H, Xu R K, Zheng Y Y, et al. Analysis and comparison of extracting alteration information from OLI and ASTER data:An example of the Tongtuer Pb-Zn polymetallic deposit in Dulan,Qinghai Province[J]. Geology and Prospecting, 2019, 55(2): 600-607.

    [34]

    张玉君, 曾朝铭, 陈薇. ETM+(TM)蚀变遥感异常提取方法研究与应用——方法选择和技术流程[J]. 国土资源遥感, 2003, 15(2): 44-50.doi:10.6046/gtzyyg.2003.02.11.

    [35]

    Zhang Y J, Zeng Z M, Chen W. The methods for extraction of alteration anomalies from the ETM+(TM) data and their application:Method selection and technological flow chart[J]. Remote Sensing for Land and Resources, 2003, 15(2): 44-50.doi:10.6046/gtzyyg.2003.02.11.

    [36]

    肖晨超, 吴小娟, 王大明, 等. 基于烃类微渗漏的油气异常信息提取及远景区预测——以中非Salamat盆地为例[J]. 国土资源遥感, 2019, 31(4): 120-127.doi:10.6046/gtzyyg.2019.04.16.

    [37]

    Xiao C C, Wu X J, Wang D M, et al. Oil-gas information extraction and prospective area prediction based on hydrocarbon microseepage theory:A case study of Salamat Basin in Central Africa[J]. Remote Sensing for Land and Resources, 2019, 31(4):120-127.doi:10.6046/gtzyyg.2019.04.16.

    [38]

    Al-Anazi E A. Uranium pollution in the Al-Hayt area,south of the city of Hail.M.Sc.dissertation[R]. King Saud University,Riyadh (unpublished), 2005:212.

    [39]

    Al-Jarallah M I. Radon exhalation from granites used in Saudi Arabia[J]. Journal of Environmental Radioactivity, 2001, 53:91-98.

  • 加载中
计量
  • 文章访问数:  524
  • PDF下载数:  131
  • 施引文献:  0
出版历程
收稿日期:  2021-11-05
修回日期:  2022-12-15
刊出日期:  2022-12-27

目录