中国自然资源航空物探遥感中心主办
地质出版社出版

基于夜光遥感数据的西南地区多维贫困测度及时空演变分析

张琼艺, 李昆, 雍志玮, 熊俊楠, 程维明, 肖坤洪, 刘东丽. 2022. 基于夜光遥感数据的西南地区多维贫困测度及时空演变分析. 自然资源遥感, 34(4): 286-298. doi: 10.6046/zrzyyg.2021386
引用本文: 张琼艺, 李昆, 雍志玮, 熊俊楠, 程维明, 肖坤洪, 刘东丽. 2022. 基于夜光遥感数据的西南地区多维贫困测度及时空演变分析. 自然资源遥感, 34(4): 286-298. doi: 10.6046/zrzyyg.2021386
ZHANG Qiongyi, LI Kun, YONG Zhiwei, XIONG Junnan, CHENG Weiming, XIAO Kunhong, LIU Dongli. 2022. The multidimensional measure and spatial-temporal evolution analysis of poverty in southwestern China based on nighttime light data. Remote Sensing for Natural Resources, 34(4): 286-298. doi: 10.6046/zrzyyg.2021386
Citation: ZHANG Qiongyi, LI Kun, YONG Zhiwei, XIONG Junnan, CHENG Weiming, XIAO Kunhong, LIU Dongli. 2022. The multidimensional measure and spatial-temporal evolution analysis of poverty in southwestern China based on nighttime light data. Remote Sensing for Natural Resources, 34(4): 286-298. doi: 10.6046/zrzyyg.2021386

基于夜光遥感数据的西南地区多维贫困测度及时空演变分析

  • 基金项目:

    四川省科技厅重点研发项目“基于多源遥感数据的西藏农业干旱监测关键技术研究与应用”(2021YFQ0042)

    国家重点研发计划课题“村寨地质灾害智能监测与治理技术研发及应用示范”(2020YFD1100701)

    西藏自治区科技计划项目“基于立体遥感观测网的西藏生态环境监测技术体系建设及示范应用”(XZ201901-GA-07)

详细信息
    作者简介: 张琼艺(1993-),女,硕士,主要从事环境与灾害遥感研究。Email: 515755332@qq.com
  • 中图分类号: TP79

The multidimensional measure and spatial-temporal evolution analysis of poverty in southwestern China based on nighttime light data

  • 中国的区域性整体贫困问题在2020年已经解决,但相对贫困仍将长期存在。因此,对贫困地区进行长期的贫困测量和发展分析仍具有重要意义。但是传统的测度方式使用社会经济数据存在较大的限制。以中国西南4省(市)为研究区域,首先,建立了基于粒子群优化算法的反向传播(back propagation, BP)神经网络模型,构建了2000—2019年的长时间序列夜光(nighttime light, NTL)数据集; 然后,根据社会经济和地理数据,构建了反映县域贫困的多维贫困指数; 最后,将长时间序列NTL数据与多维贫困指数相结合,构建了贫困测度模型,输出基于NTL数据的多维贫困指数(nighttime light multidimensional poverty index, NLMPI)。同时,在NLMPI指数的基础上进行了县域贫困测度和时空动态分析。研究表明,在2000年NLMPI表明西南4省(市)多维贫困状况分化较为严重,但随国家扶贫工作的开展,极低和较低等级县域占比下降,中等县域占比提高; 在2000—2019年间,西南地区各县域的NLMPI具有正的空间自相关,Moran’s I指数呈现先降后升的趋势,这反映出在2000—2010年,贫困聚集现象有所减弱,而在之后进入了较为分散的脱贫攻坚阶段; 局部空间自相关的结果表明,中国西南地区的多维贫困模式正在改善,但不平衡; 结果反映在成渝、昆明和贵阳的高-高聚集,以及四川西北部和云南西部的低-低聚集的空间模式。本研究强调了夜光遥感数据在区域尺度贫困研究中的应用能力。
  • 加载中
  • [1]

    Steele J E, Sunds?y P R, Pezzulo C, et al. Mapping poverty using mobile phone and satellite data[J]. Journal of the Royal Society Interface, 2017, 14(127):20160690.

    [2]

    刘彦随, 周扬, 刘继来. 中国农村贫困化地域分异特征及其精准扶贫策略[J]. 中国科学院院刊, 2016, 31(3):269-278.

    [3]

    Liu Y S, Zhou Y, Liu J L. Regional differentiation characteristics of rural poverty and targeted poverty alleviation strategy in China[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(3):269-278.

    [4]

    周扬, 郭远智, 刘彦随. 中国县域贫困综合测度及2020年后减贫瞄准[J]. 地理学报, 2018, 73(8):1478-1493.

    [5]

    Zhou Y, Guo Y Z, Liu Y S. Comprehensive measurement of county poverty and anti-poverty targeting after 2020 in China[J]. Acta Geographica Sinica, 2018, 73(8):1478-1493.

    [6]

    Amis P, Rakodi C. Urban poverty:Concepts,characteristics and policies[J]. Habitat International, 1995, 19(4):403-405.

    [7]

    胡为安. 基于合成NPP-VIIRS年度数据的中国贫困地区发展状况研究[D]. 赣州: 江西理工大学, 2020.

    [8]

    Hu W A. Research on the development situation of poor regions in China based on synthetic NPP-VIIRS annual data[D]. Ganzhou: Jiangxi University of Science and Technology, 2020.

    [9]

    王武林, 余翠婵, 曾献君, 等. 东南沿海县域贫困度演变特征及驱动因素研究——以福建省为例[J]. 地理科学进展, 2020, 39(11):1860-1873.

    [10]

    Wang W L, Yu C C, Zeng X J, et al. Evolution characteristics and driving factors of county poverty degree in China’s southeast coastal areas:A case study of Fujian Province[J]. Progress in Geography, 2020, 39(11):1860-1873.

    [11]

    郭熙保, 罗知. 论贫困概念的演进[J]. 江西社会科学, 2005(11):38-43.

    [12]

    Guo X B, Luo Z. Evolution of the concept of poverty[J]. Jiangxi Social Sciences, 2005(11):38-43.

    [13]

    胡蝶. 基于机器学习的贫困等级分类[D]. 武汉: 华中师范大学, 2019.

    [14]

    Hu D. Classification of poverty levels based on machine learning[D]. Wuhan: Central China Normal University, 2019.

    [15]

    Cheli B, Lemmi A. A totally fuzzy and relative approach to the multidimensional analysis of poverty[J]. Economic Notes, 1995, 24(1):115-134.

    [16]

    Bourguignon F, Chakravarty S R. The measurement of multidimensional poverty[M]. Smgapore: Poverty,Social Exclusion and Stochastic Dominance. Springer, 2019:83-107.

    [17]

    Lugo M, Maasoumi E. Multidimensional poverty measures from an information theory perspective[M]. Oxford Poverty and Human Development Initiative (OPHI), 2009.

    [18]

    Alkire S, Foster J. Counting and multidimensional poverty measurement[J]. Journal of Public Economics, 2011, 95(7-8):476-487.

    [19]

    Noor A M, Alegana V A, Gething P W, et al. Using remotely sensed night-time light as a proxy for poverty in Africa[J]. Population Health Metrics, 2008, 6(1):5.

    [20]

    Smith B, Wills S. Left in the dark? Oil and rural poverty[J]. Journal of the Association of Environmental and Resource Economists, 2018, 5(4):865-904.

    [21]

    Elvidge C D, Sutton P C, Ghosh T, et al. A global poverty map derived from satellite data[J]. Computers and Geosciences, 2009, 35(8):1652-1660.

    [22]

    Wang W, Cheng H, Zhang L. Poverty assessment using DMSP/OLS night-time light satellite imagery at a provincial scale in China[J]. Advances in Space Research, 2012, 49(8):1253-1264.

    [23]

    Li G, Chang L, Liu X, et al. Monitoring the spatiotemporal dynamics of poor counties in China:Implications for global sustainable development goals[J]. Journal of Cleaner Production, 2019, 227:392-404.

    [24]

    Han L, Zhang Q, Ma P, et al. The spatial distribution characteristics of a comprehensive drought risk index in southwestern China and underlying causes[J]. Theoretical and Applied Climatology, 2016, 124(3):517-528.

    [25]

    Zhao J, Ji G, Yue Y, et al. Spatio-temporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets[J]. Applied Energy, 2019, 235:612-624.

    [26]

    Sun Y, Zheng S, Wu Y, et al. Spatiotemporal variations of city-level carbon emissions in China during 2000—2017 using nighttime light data[J]. Remote Sensing, 2020, 12(18):2916.

    [27]

    Wu J, He S, Peng J, et al. Intercalibration of DMSP-OLS night-time light data by the invariant region method[J]. International Journal of Remote Sensing, 2013, 34(20):7356-7368.

    [28]

    Yue Y, Tian L, Yue Q, et al. Spatiotemporal variations in energy consumption and their influencing factors in China based on the integration of the DMSP-OLS and NPP-VIIRS nighttime light datasets[J]. Remote Sensing, 2020, 12(7):1151.

    [29]

    Wu Y, Jiang M, Chang Z, et al. Does China’s urban development satisfy Zipf’s law? A multiscale perspective from the NPP-VIIRS nighttime light data[J]. International Journal of Environmental Research and Public Health, 2020, 17(4):1460.

    [30]

    Li X, Zhou Y, Zhao M, et al. A harmonized global nighttime light dataset 1992—2018[J]. Scientific Data, 2020, 7(1):1-9.

    [31]

    Elvidge C D, Ziskin D, Baugh K E, et al. A fifteen year record of global natural gas flaring derived from satellite data[J]. Energies, 2009, 2(3):595-622.

    [32]

    Hall F G, Strebel D E, Nickeson J E, et al. Radiometric rectification:Toward a common radiometric response among multidate,multisensor images[J]. Remote Sensing of Environment, 1991, 35(1):11-27.

    [33]

    Ma J, Guo J, Ahmad S, et al. Constructing a new inter-calibration method for DMSP-OLS and NPP-VIIRS nighttime light[J]. Remote Sensing, 2020, 12(6):937.

    [34]

    Jeswani R, Kulshrestha A, Gupta P K, et al. Evaluation of the consistency of DMSP-OLS and SNPP-VIIRS night-time light datasets[J]. J Geomat, 2019, 13:98-105.

    [35]

    Gori M, Tesi A. On the problem of local minima in back propagation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(1):76-86.

    [36]

    Zhang J R, Zhang J, Lok T M, et al. A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training[J]. Applied Mathematics and Computation, 2007, 185(2):1026-1037.

    [37]

    Wang Y, Wang B. Multidimensional poverty measure and analysis:A case study from Hechi City,China[J]. SpringerPlus, 2016, 5(1):642.

    [38]

    Li C, Yang W, Tang Q, et al. Detection of multidimensional poverty using Luojia 1-01 nighttime light imagery[J]. Journal of the Indian Society of Remote Sensing, 2020, 48(7):963-977.

    [39]

    Alkire S, Foster J. Counting and multidimensional poverty measurement[J]. Journal of Public Economics, 2011, 95(7):476-487.

    [40]

    Hu J, Zhang T, Xin X, et al. Income identification and long-term multidimensional poverty:An empirical analysis based on data from China household tracking survey[J]. On Economic Problems, 2019 (8):75-81,90.

    [41]

    Yin J, Qiu Y, Zhang B. Identification of poverty areas by remote sensing and machine learning:A case study in Guizhou,Southwest China[J]. ISPRS Int ernational Jounra Geo-Inf ormation, 2021, 10(1):11.

    [42]

    Yu B, Shi K, Hu Y, et al. Poverty evaluation using NPP-VIIRS nighttime light composite data at the county level in China[J]. IEEE Journal of Selected Topics in Applied Earth Observations Remote Sensing, 2017, 8(3):1217-1229.

  • 加载中
计量
  • 文章访问数:  1595
  • PDF下载数:  132
  • 施引文献:  0
出版历程
收稿日期:  2021-11-16
修回日期:  2022-12-15
刊出日期:  2022-12-27

目录