中国自然资源航空物探遥感中心主办
地质出版社出版

基于ASTER数据的地表温度遥感反演与产品检验——以黑河流域为例

马俊俊, 王春磊, 黄晓红. 2023. 基于ASTER数据的地表温度遥感反演与产品检验——以黑河流域为例. 自然资源遥感, 35(1): 198-204. doi: 10.6046/zrzyyg.2021414
引用本文: 马俊俊, 王春磊, 黄晓红. 2023. 基于ASTER数据的地表温度遥感反演与产品检验——以黑河流域为例. 自然资源遥感, 35(1): 198-204. doi: 10.6046/zrzyyg.2021414
MA Junjun, WANG Chunlei, HUANG Xiaohong. 2023. The remote sensing inversion and validation of land surface temperature based on ASTER data: A case study of the Heihe River basin. Remote Sensing for Natural Resources, 35(1): 198-204. doi: 10.6046/zrzyyg.2021414
Citation: MA Junjun, WANG Chunlei, HUANG Xiaohong. 2023. The remote sensing inversion and validation of land surface temperature based on ASTER data: A case study of the Heihe River basin. Remote Sensing for Natural Resources, 35(1): 198-204. doi: 10.6046/zrzyyg.2021414

基于ASTER数据的地表温度遥感反演与产品检验——以黑河流域为例

  • 基金项目:

    国家自然科学基金项目“沙尘气溶胶影响下的地表长波辐射遥感估算”(41801264)

    河北省自然科学基金项目“沙尘气溶胶影响下的地表温度反演研究”(D202009074)

详细信息
    作者简介: 马俊俊(1997-),女,硕士研究生,主要研究方向为热红外遥感。Email: 3149536029@qq.com
  • 中图分类号: TP79

The remote sensing inversion and validation of land surface temperature based on ASTER data: A case study of the Heihe River basin

  • 针对黑河流域的地表类型特点和大气特征,基于 ASTER发射率产品和植被覆盖度法(vegetation cover method,VCM)计算了研究区地表发射率,并利用改进的多层前馈神经网络(multilayer feedforword neural network,MFNN)算法估算了区域大气水汽含量,通过对输入参数分组构建系数查找表,发展了适用于ASTER数据遥感反演地表温度的分裂窗算法。为检验算法的适应性和精度,利用黑河流域2019年的地表温度实测数据和MODIS温度产品对算法进行评价。结果表明,与站点数据相比,均方根误差在1.81~3.01 K之间; 在与MODIS数据产品交叉验证中,本文提出的算法误差和偏差相对较小,均方根误差在1.11~1.75 K之间。总体来说,利用本算法反演得到的温度产品精度可满足气象气候学研究的需要,算法的构建思路也可为类似的热红外传感器提供借鉴。
  • 加载中
  • [1]

    李召良, 段四波, 唐伯惠, 等. 热红外地表温度遥感反演方法研究进展[J]. 遥感学报, 2016, 20(5):899-920.

    [2]

    Li Z L, Duan S B, Tang B H, et al. Research progress in inversion methods of thermal infrared land surface temperature remote sensing[J]. Journal of Remote Sensing, 2016, 20(5):899-920.

    [3]

    Anderson M C, Kustas W P, Norman J M, et al. Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery[J]. Hydrology and Earth System Sciences, 2011, 15(1):223-239.

    [4]

    程博, 刘少峰, 杨巍然. Terra卫星ASTER数据的特点与应用[J]. 华东地质学院学报, 2003(1):15-17.

    [5]

    Cheng B, Liu S F, Yang W R. The characteristics and application of Terra satellite ASTER data[J]. Journal of East China Institute of Geology, 2003(1):15-17.

    [6]

    Gillespie A, Rokugawa S. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(4):1113-1126.

    [7]

    杨杭, 张立福, 张学文, 等. TASI数据的温度与发射率分离算法[J]. 遥感学报, 2011, 15(6):1248-1264.

    [8]

    Yang H, Zhang L F, Zhang X W, et al. The separation algorithm of temperature and emissivity for TASI data[J]. Journal of Remote Sensing, 2011, 15(6):1248-1264.

    [9]

    张允祥, 李新, 韦玮, 等. 基于多通道温度与发射率分离算法的敦煌场地红外特性研究[J]. 光学学报, 2019, 39(10):309-317.

    [10]

    Zhang Y X, Li X, Wei W, et al. Research on infrared characteristics of Dunhuang site based on multi-channel temperature and emissivity separation algorithm[J]. Acta Optics, 2019, 39(10):309-317.

    [11]

    McMillin L M. Estimation of sea surface temperatures from two infrared window measurements with different absorption[J]. Journal of Geophysical Research, 1975, 80(36):5113-5117.

    [12]

    Price J C. Land surface temperature measurements from the split window channels of the NOAA-7 AVHRR[J]. Journal of Geophysical Research Atmospheres, 1984, 89(5):7231-7237.

    [13]

    毛克彪, 唐华俊, 陈仲新, 等. 一个从ASTER数据中反演地表温度的分裂窗算法[J]. 遥感信息, 2006(5):7-11.

    [14]

    Mao K B, Tang H J, Chen Z X, et al. A split-window algorithm for retrieving land surface temperature from ASTER data[J]. Remote Sensing Information, 2006(5):7-11.

    [15]

    孙静, 赵萍, 叶琦. 一种ASTER数据地表温度反演的分裂窗算法[J]. 遥感技术与应用, 2012(5):728-734.

    [16]

    Sun J, Zhao P, Ye Q. A split window algorithm for retrieving surface remperature from ASTER data[J]. Remote Sensing Technology and Application, 2012(5):728-734.

    [17]

    Wan Z, Dozier J. A generalized split-window algorithm for retrieving land-surface temperature from space[J]. IEEE Transactions on Geoscience & Remote Sensing, 1996, 34(4):892-905.

    [18]

    Liu S M, Li X, Xu Z W, et al. The Heihe integrated observatory network:A basin-scale land surface processes observatory in China[J]. Vadose Zone Journal, 2018, 17(1) :1-21.

    [19]

    Ri C G, 柳钦火, 历华, 等. 针对Terra/MODIS数据的改进分裂窗地表温度反演算法[J]. 遥感学报, 2013(4):830-840.

    [20]

    Ri C G, Liu Q H, Li H, et al. Improved split-window land surface temperature retrieval algorithm for Terra/MODIS data[J]. Journal of Remote Sensing, 2013(4):830-840.

    [21]

    Galve J M, Coll C, Caselles V, et al. An atmospheric radiosounding database for generating land surface temperature algorithms[J]. IEEE Transactions on Geoscience & Remote Sensing, 2008, 46(5):1547-1557.

    [22]

    李珊珊, 蒋耿明. 基于通用分裂窗算法和Landsat-8数据的地表温度反演研究[J]. 遥感技术与应用, 2018, 33(2):284-295.

    [23]

    Li S S, Jiang G M. Research on land surface temperature inversion based on general split window algorithm and Landsat-8 data[J]. Remote Sensing Technology and Application, 2018, 33(2):284-295.

    [24]

    Jiang J X, Li H, Liu Q H, et al. Evaluation of land surface temperature retrieval from FY-3B/VIRR data in an arid area of northwestern China[J]. Remote Sensing, 2015, 7(6):7080-7104.

    [25]

    孟翔晨, 历华, 杜永明, 等. 基于ASTER GED产品的地表发射率估算[J]. 遥感学报, 2016, 20(3):382-396.

    [26]

    Meng X C, Li H, Du Y M, et al. Estimation of surface emissivity based on ASTER GED products[J]. Journal of Remote Sensing, 2016, 20(3):382-396.

    [27]

    Valor E, Caselles V. Mapping land surface emissivity from NDVI:Application to European,African,and South American areas[J]. Remote Sensing of Environment, 1996, 57(3):167-184.

    [28]

    Sobrino J A, Jimenez-Muoz J C, Soria G, et al. Land surface emissivity retrieval from different VNIR and TIR sensors[J]. IEEE Transactions on Geoscience & Remote Sensing, 2008, 46(2):316-327.

    [29]

    杨亮彦, 孔金玲, 王雅婷, 等. 旱区大气水汽含量遥感反演算法研究[J]. 测绘科学, 2020, 45(5):95-100.

    [30]

    Yang L Y, Kong J L, Wang Y T, et al. Research on remote sensing inversion algorithm of atmospheric water vapor content in arid area[J]. Science of Surveying and Mapping, 2020, 45(5):95-100.

    [31]

    李红林, 李万彪. MODIS近红外资料反演大气水汽总含量[J]. 北京大学学报(自然科学版), 2008(1):121-128.

    [32]

    Li H L, Li W B. Retrieving total atmospheric water vapor content from MODIS near-infrared data[J]. Journal of Peking University (Natural Science Edition), 2008(1):121-128.

    [33]

    Li Z L, Li J, Su Z G, et al. A new approach for retrieving precipitable water from ATSR2 split-window channel data over land area[J]. International Journal of Remote Sensing, 2003, 24(24):5095-5117.

    [34]

    Zhang S, Xu L, Ding J, et al. A neural network based algorithm for the retrieval of precipitable water vapor from MODIS data[J]. Lecture Notes in Electrical Engineering, 2010, 67:909-916.

    [35]

    马晋, 周纪, 刘绍民, 等. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6):615-629.

    [36]

    Ma J, Zhou J, Liu S M, et al. Research progress on authenticity verification of satellite remote sensing of land surface temperature[J]. Advances in Earth Science, 2017, 32(6):615-629.

    [37]

    Duan S B, Li Z L, Cheng J, et al. Cross-satellite comparison of operational land surface temperature products derived from MODIS and ASTER data over bare soil surfaces-ScienceDirect[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 126(4):1-10.

    [38]

    Liu Y, Hiyama T, Yamaguchi Y. Scaling of land surface temperature using satellite data:A case examination on ASTER and MODIS products over a heterogeneous terrain area[J]. Remote Sensing of Environment, 2006, 105(2):115-128.

  • 加载中
计量
  • 文章访问数:  1116
  • PDF下载数:  205
  • 施引文献:  0
出版历程
收稿日期:  2021-11-19
修回日期:  2023-03-15
刊出日期:  2023-03-20

目录