中国自然资源航空物探遥感中心主办
地质出版社出版

基于深度学习的空谱遥感图像融合综述

胡建文, 汪泽平, 胡佩. 2023. 基于深度学习的空谱遥感图像融合综述. 自然资源遥感, 35(1): 1-14. doi: 10.6046/zrzyyg.2021433
引用本文: 胡建文, 汪泽平, 胡佩. 2023. 基于深度学习的空谱遥感图像融合综述. 自然资源遥感, 35(1): 1-14. doi: 10.6046/zrzyyg.2021433
HU Jianwen, WANG Zeping, HU Pei. 2023. A review of pansharpening methods based on deep learning. Remote Sensing for Natural Resources, 35(1): 1-14. doi: 10.6046/zrzyyg.2021433
Citation: HU Jianwen, WANG Zeping, HU Pei. 2023. A review of pansharpening methods based on deep learning. Remote Sensing for Natural Resources, 35(1): 1-14. doi: 10.6046/zrzyyg.2021433

基于深度学习的空谱遥感图像融合综述

  • 基金项目:

    国家自然科学基金项目“高效多任务高光谱遥感图像超分辨率及质量评价研究”(62271087)

    湖南省自然科学基金项目“基于动态卷积神经网络的遥感图像融合”(2021JJ40609)

详细信息
    作者简介: 胡建文(1985-),男,副教授,研究方向为图像处理、深度学习和稀疏表示。Email: hujianwen1@163.com
  • 中图分类号: TP391.4

A review of pansharpening methods based on deep learning

  • 随着遥感技术的快速发展与广泛应用,对获取的遥感图像质量有了更高的要求。但是,难以直接获得高空间分辨率多光谱遥感图像。为了结合不同成像传感器的信息,获得高质量的图像,图像融合技术应运而生。空谱遥感图像融合是一种获取高空间分辨率多光谱图像的有效方法,目前已有许多学者针对空谱遥感图像融合展开研究,取得了较多成果。近年来,深度学习理论得到了快速发展,广泛应用于空谱遥感图像融合。为了让学者们能够更系统地了解空谱遥感图像融合的现状,推动空谱遥感图像融合的发展,首先对常用的遥感卫星作了介绍,并简单总结了传统的经典空谱图像融合算法; 其次,从监督学习、无监督学习和半监督学习3个方面,重点对基于深度学习的空谱图像融合算法进行了阐述,还对损失函数进行了描述与分析; 然后,为了证明基于深度学习方法的优越性以及分析损失函数的影响,开展了遥感图像融合实验; 最后,对基于深度学习的空谱图像融合方法进行了展望。
  • 加载中
  • [1]

    肖亮, 刘鹏飞, 李恒. 多源空—谱遥感图像融合方法进展与挑战[J]. 中国图象图形学, 2020, 25(5):851-863.

    [2]

    Xiao L, Liu P F, Li H. Progress and challenges in the fusion of multisource spatial-spectral remote sensing images[J]. Journal of Image and Graphics, 2020, 25(5):851-863.

    [3]

    Ghassemian H. A review of remote sensing image fusion methods[J]. Information Fusion, 2016, 32:75-89.

    [4]

    张丽霞, 曾广平, 宣兆成. 多源图像融合方法的研究综述[J]. 计算机工程与科学, 2021:1-14.

    [5]

    Zhang L X, Zeng G P, Xuan Z C. A survey of fusion methods for multi-source image[J]. Computer Engineering and Science, 2021:1-14.

    [6]

    杨丽萍, 马孟, 谢巍, 等. 干旱区Landsat8全色与多光谱数据融合算法评价[J]. 国土资源遥感, 2019, 31(4):11-19.doi:10.6046/gtzyyg.2019.04.02.

    [7]

    Yang L P, Ma M, Xie W, et al. Fusion algorithm evaluation of Landsat8 panchromatic and multispetral images in arid regions[J]. Remote Sensing for Land and Resources, 2019, 31(4):11-19.doi:10.6046/gtzyyg.2019.04.02.

    [8]

    Weiss M, Jacob F, Duveiller G. Remote sensing for agricultural applications:A meta-review[J]. Remote Sensing of Environment, 2020, 236:111402-111420.

    [9]

    刘万军, 高健康, 曲海成, 等. 多尺度特征增强的遥感图像舰船目标检测[J]. 自然资源遥感, 2021, 33(3):97-106.doi:10.6046/zrzyyg.20200372.

    [10]

    Liu W J, Gao J K, Qu H C, et al. Ship detection based on multi-scale feature enhancement of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(3):97-106.doi:10.6046/zrzyyg.20200372.

    [11]

    王琳, 李迅, 包云轩, 等. 遥感技术在交通气象灾害监测中的应用进展[J]. 国土资源遥感, 2018, 30(4):1-7.doi:10.6046/gtzyyg.2018.04.01.

    [12]

    Wang L, Li X, Bao Y X, et al. Research progress of remote sensing application on transportation meteorological disasters[J]. Remote Sensing and for Land and Resources, 2018, 30(4):1-7.doi:10.6046/gtzyyg.2018.04.01.

    [13]

    王洪斌, 肖嵩, 曲家慧, 等. 基于多分支CNN高光谱与全色影像融合处理[J]. 光学学报, 2021, 41(7):55-63.

    [14]

    Wang H B, Xiao S, Qu J H, et al. Pansharpening based on multi-branch CNN[J]. Acta Optica Sinica, 2021, 41(7):55-63.

    [15]

    张良培, 沈焕锋. 遥感数据融合的进展与前瞻[J]. 遥感学报, 2016, 20(5):1050-1061.

    [16]

    Zhang L P, Shen H F. Progress and future of remote sensing data fusion[J]. Journal of Remote Sensing, 2016, 20(5):1050-1061.

    [17]

    李树涛, 李聪妤, 康旭东. 多源遥感图像融合发展现状与未来展望[J]. 遥感学报, 2021, 25(1):148-166.

    [18]

    Li S T, Li C Y, Kang X D. Development status and future prospects of multi-source remote sensing image fusion[J]. National Remote Sensing Bulletin, 2021, 25(1):148-166.

    [19]

    张立福, 彭明媛, 孙雪剑, 等. 遥感数据融合研究进展与文献定量分析(1992—2018)[J]. 遥感学报, 2019, 23(4):603-619.

    [20]

    Zhang L F, Peng M Y, Sun X J, et al. Progress and bibliometric analysis of remote sensing data fusion methods (1992—2018)[J]. Journal of Remote Sensing, 2019, 23(4):603-619.

    [21]

    Meng X, Shen H, Li H, et al. Review of the pansharpening methods for remote sensing images based on the idea of meta-analysis:Practical discussion and challenges[J]. Information Fusion, 2019, 46:102-113.

    [22]

    Javan F D, Samadzadegan F, Mehravar S, et al. A review of image fusion techniques for pan-sharpening of high-resolution satellite imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 171:101-117.

    [23]

    Vivone G, Mura M D, Garzelli A, et al. A new benchmark based on recent advances in multispectral pansharpening:Revisiting pansharpening with classical and emerging pansharpening methods[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 9(1):53-81.

    [24]

    Huang W, Xiao L, Wei Z, et al. A new pan-sharpening method with deep neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5):1037-1041.

    [25]

    Masi G, Cozzolino D, Verdoliva L, et al. Pansharpening by convolutional neural networks[J]. Remote Sensing, 2016, 8(7):594-615.

    [26]

    Shahdoosti H R, Ghassemian H. Combining the spectral PCA and spatial PCA fusion methods by an optimal filter[J]. Information Fusion, 2016, 27:150-160.

    [27]

    Laben C A, Brower B V. Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening:U.S.,US09/069232[P]. 2000-01-04.

    [28]

    Ghahremani M, Ghassemian H. Nonlinear IHS:A promising method for pan-sharpening[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11):1606-1610.

    [29]

    Garzelli A, Nencini F, Capobianco L. Optimal MMSE pan sharpening of very high resolution multispectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 46(1):228-236.

    [30]

    Aiazzi B, Alparone L, Baronti S, et al. MTF-tailored multiscale fusion of high-resolution MS and pan imagery[J]. Photogrammetric Engineering and Remote Sensing, 2006, 72(5):591-596.

    [31]

    Vivone G, Restaino R, Chanussot J. Full scale regression-based injection coefficients for panchromatic sharpening[J]. IEEE Transactions on Image Processing, 2018, 27(7):3418-3431.

    [32]

    Khan M M, Chanussot J, Condat L, et al. Indusion:Fusion of multispectral and panchromatic images using the induction scaling technique[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(1):98-102.

    [33]

    Dong L, Yang Q, Wu H, et al. High quality multi-spectral and panchromatic image fusion technologies based on curvelet transform[J]. Neurocomputing, 2015, 159:268-274.

    [34]

    El-Mezouar M C, Kpalma K, Taleb N, et al. A pan-sharpening based on the non-subsampled contourlet transform:Application to WorldView-2 imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(5):1806-1815.

    [35]

    曹义亲, 杨世超, 谢舒慧. 基于NSST的PCNN-SR卫星遥感图像融合方法[J]. 航天控制, 2020, 38(2):44-50.

    [36]

    Cao Y Q, Yang S C, Xie S H. Satellite remote sensing image fusion method based on NSST and PCNN-SR[J]. Aerospce Control, 2020, 38(2):44-50.

    [37]

    吴一全, 王志来. 混沌蜂群优化的NSST域多光谱与全色图像融合[J]. 遥感学报, 2017, 21(4):549-557.

    [38]

    Wu Y Q, Wang Z L. Multispectral and panchromatic image fusion using chaotic Bee Colony optimization in NSST domain[J]. Journal of Remote Sensing, 2017, 21(4):549-557.

    [39]

    Li S, Yang B. A new pan-sharpening method using a compressed sensing technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 49(2):738-746.

    [40]

    Yin H. PAN-guided cross-resolution projection for local adaptive sparse representation-based pansharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7):4938-4950.

    [41]

    李成轶, 田淑芳. 基于字典学习的遥感影像超分辨率融合方法[J]. 国土资源遥感, 2017, 29(1):50-56.doi:10.6046/gtzyyg.2017.01.08.

    [42]

    Li C Y, Tian S F. Super-resolution fusion method for remote sensing image based on dictionary learning[J]. Remote Sensing and for Land and Resources, 2017, 29(1):50-56.doi:10.6046/gtzyyg.2017.01.08.

    [43]

    Yin H. Sparse representation based pansharpening with details injection model[J]. Signal Processing, 2015, 113:218-227.

    [44]

    Li S, Yin H, Fang L. Remote sensing image fusion via sparse representations over learned dictionaries[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(9):4779-4789.

    [45]

    Scarpa G, Vitale S, Cozzolino D. Target-adaptive CNN-based pansharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9),5443-5457.

    [46]

    Wei Y, Yuan Q, Shen H, et al. Boosting the accuracy of multispectral image pansharpening by learning a deep residual network[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10),1795-1799.

    [47]

    Yang J, Fu X, Hu Y, et al. PanNet:A deep network architecture for pan-sharpening[C]// Proceedings of the IEEE International Conference on Computer Vision.IEEE,Venice,Italy, 2017:5449-5457.

    [48]

    Zhang H, Ma J. GTP-PNet:A residual learning network based on gradient transformation prior for pansharpening[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 172:223-239.

    [49]

    Yang Y, Tu W, Huang S, et al. PCDRN:Progressive cascade deep residual network for pansharpening[J]. Remote Sensing, 2020, 12(4):676.

    [50]

    Huang W, Feng J, Wang H, et al. A new architecture of densely connected convolutional networks for pan-sharpening[J]. ISPRS International Journal of Geo-Information, 2020, 9(4):242.

    [51]

    Peng J, Liu L, Wang J, et al. PSMD-Net:A novel pan-sharpening method based on a multiscale dense network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(6):4957-4971.

    [52]

    Luo S, Zhou S, Qi Y. CSAFNET:Channel similarity attention fusion network for multispectral pansharpening[J]. IEEE Geoscience and Remote Sensing Letters, 2020.

    [53]

    孔爱玲, 张承明, 李峰, 等. 基于知识引导的遥感影像融合方法[J]. 自然资源遥感, 2022, 34(2):47-55.doi:10.6046/zrzyyg.2021179.

    [54]

    Kong A L, Zhang C M, Li F, et al. Knowledge-based remote sensing imagery fusion method[J]. Remote Sensing for Natural Resources, 2022, 34(2):47-55.doi:10.6046/zrzyyg.2021179.

    [55]

    Jiang M, Shen H, Li J, et al. A differential information residual convolutional neural network for pansharpening[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163:257-271.

    [56]

    Lei D, Chen H, Zhang L, et al. NLRNet:An efficient nonlocal attention resnet for pansharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5401113.

    [57]

    Shao Z, Cai J. Remote sensing image fusion with deep convolutional neural network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(5),1656-1669.

    [58]

    Liu X, Liu Q, Wang Y. Remote sensing image fusion based on two-stream fusion network[J]. Information Fusion, 2020,55,1-15.

    [59]

    Fu S, Meng W, Jeon G, et al. Two-path network with feedback connections for pan-sharpening in remote sensing[J]. Remote Sensing, 2020, 12(10),1674.

    [60]

    He L, Xi D, Li J, et al. A spectral-aware convolutional neural network for pansharpening[J]. Applied Sciences, 2020, 10(17),5809.

    [61]

    Zhang Y, Liu C, Sun M, et al. Pan-sharpening using an efficient bidirectional pyramid network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8),5549-5563.

    [62]

    Fang S, Wang X, Zhang J, et al. Pan-sharpening based on parallel pyramid convolutional neural network[C]// IEEE International Conference on Image Processing (ICIP), 2020:453-457.

    [63]

    方帅, 方赛华, 姚宏亮. 基于深度金字塔网络的Pan-Sharpening算法[J]. 计算机辅助设计与图形学学报, 2019, 31(10):1831-1837.

    [64]

    Fang S, Fang S H, Yao H L. Pan-sharpening based on a deep pyramid network[J]. Journal of Computer-Aided Design and Computer Graphics, 2019, 31(10):1831-1837.

    [65]

    Ronneberger O, Fischer P, Brox T. U-Net:Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.Springer,Cham, 2015:234-241.

    [66]

    Yao W, Zeng Z, Lian C, et al. Pixel-wise regression using U-Net and its application on pansharpening[J]. Neurocomputing, 2018, 312:364-371.

    [67]

    Wang W, Zhou Z, Liu H, et al. MSDRN:Pansharpening of multispectral images via multi-scale deep residual network[J]. Remote Sensing, 2021, 13(6):1200.

    [68]

    Lai Z, Chen L, Jeon G, et al. Real-time and effective pan-sharpening for remote sensing using multi-scale fusion network[J]. Journal of Real-Time Image Processing, 2021:1-17.

    [69]

    Benzenati T, Kallel A, Kessentini Y. Two stages pan-sharpening details injection approach based on very deep residual networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(6),4984-4992.

    [70]

    He K, Zhang X, Ren S, et al. Deep residual learning for image reco-gnition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:770-778.

    [71]

    Hu J, Du C, Fan S. Two-stage pansharpening based on multi-level detail injection network[J]. IEEE Access, 2020, 8:156442-156455.

    [72]

    Zhang L, Zhang J, Ma J, et al. SC-PNN:Saliency cascade convolutional neural network for pansharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021:1-19.

    [73]

    Li W, Liang X, Dong M. MDECNN:A multiscale perception dense encoding convolutional neural network for multispectral pan-sharpening[J]. Remote Sensing, 2021, 13(3):535.

    [74]

    Yuan Q, Wei Y, Meng X, et al. A multiscale and multidepth convolutional neural network for remote sensing imagery pan-sharpening[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3):978-989.

    [75]

    Hu J, Hu P, Kang X, et al. Pan-sharpening via multiscale dynamic convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(3):2231-2244.

    [76]

    Guo Y, Ye F, Gong H. Learning an efficient convolution neural network for pansharpening[J]. Algorithms, 2019, 12(1):16.

    [77]

    Hu J, Hu P, Wang Z P, et al. Spatial dynamic selection network for remote-sensing image fusion[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:8013205.

    [78]

    Hu J, He Z, Wu J. Deep self-learning network for adaptive pansharpening[J]. Remote Sensing, 2019, 11(20):2395.

    [79]

    Liu J, Feng Y, Zhou C, et al. PWnet:An adaptive weigh network for the fusion of panchromatic and multispectral images[J]. Remote Sensing, 2020, 12(17):2804.

    [80]

    Deng L J, Vivone G, Jin C, et al. Detail injection-based deep convolutional neural networks for pansharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020:1-16.

    [81]

    Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11):139-144.

    [82]

    Ma J, Yu W, Chen C, et al. Pan-GAN:An unsupervised pan-sharpening method for remote sensing image fusion[J]. Information Fusion, 2020, 62:110-120.

    [83]

    Zhou C, Zhang J, Liu J, et al. PercepPan:Towards unsupervised pan-sharpening based on perceptual loss[J]. Remote Sensing, 2020, 12(14):2318.

    [84]

    Xiong Z, Guo Q, Liu M, et al. Pan-sharpening based on convolutional neural network by using the loss function with no-reference[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14:897-906.

    [85]

    Luo S, Zhou S, Feng Y, et al. Pansharpening via unsupervised convolutional neural networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:4295-4310.

    [86]

    杜晨光, 胡建文, 胡佩. 半监督卷积神经网络遥感图像融合[J], 电子测量与仪器学报, 2021, 35(6):63-70.

    [87]

    Du C G, Hu J W, Hu P. Semi-supervised convolutional neural network remote sensing image fusion[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(6):63-70.

    [88]

    Vitale S, Scarpa G. A detail-preserving cross-scale learning strategy for CNN-based pansharpening[J]. Remote Sensing, 2020, 12(3):348.

    [89]

    黄珊珊, 江倩, 金鑫, 等. 结合双胞胎结构与生成对抗网络的半监督遥感图像融合[J]. 计算机辅助设计与图形学学报, 2021, 33(1):92-105.

    [90]

    Huang S S, Jiang Q, Jin X, et al. Semi-supervised remote sensing image fusion method combining siamese structure with generative adversarial networks[J]. Journal of Computer-Aided Design and Computer Graphics, 2021, 33(1):92-105.

    [91]

    Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks[C]// International Conference on Machine Learning.PMLR, 2017:214-223.

    [92]

    Mirza M, Osindero S. Conditional generative adversarial nets[J]. Computer Science, 2014:2672-2680.

    [93]

    Liu X, Deng C, Zhao B, et al. Feature-level loss for multispectral pan-sharpening with machine learning[C]// IEEE International Geoscience and Remote Sensing Symposium(IGARSS).IEEE, 2018:8062-8065.

    [94]

    Xu H, Ma J, Shao Z, et al. SDPNet:A deep network for pan-sharpening with enhanced information representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(5):4120-4134.

    [95]

    Choi J S, Kim Y, Kim M. S3:A spectral-spatial structure loss for pan-sharpening networks[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(5):829-833.

    [96]

    Eghbalian S, Ghassemian H. Multi spectral image fusion by deep convolutional neural network and new spectral loss function[J]. International Journal of Remote Sensing, 2018, 39(12):3983-4002.

    [97]

    Johnson J, Alahi A, Li F F. Perceptual losses for real-time style transfer and super-resolution[C]// European Conference on Computer Vision.Springer,Cham, 2016:694-711.

    [98]

    Bello J L G, Seo S, Kim M. Pan-sharpening with color-aware perceptual loss and guided re-colorization[C]// IEEE International Conference on Image Processing (ICIP).IEEE, 2020:908-912.

    [99]

    Vivone G, Alparone L, Chanussot J, et al. A critical comparison among pansharpening algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 53(5):2565-2586.

    [100]

    Alparone L, Aiazzi B, Baronti S, et al. Multispectral and panchromatic data fusion assessment without reference[J]. Photogrammetric Engineering and Remote Sensing, 2008, 74(2):193-200.

  • 加载中
计量
  • 文章访问数:  2831
  • PDF下载数:  1563
  • 施引文献:  0
出版历程
收稿日期:  2021-12-13
修回日期:  2023-03-15
刊出日期:  2023-03-20

目录