中国自然资源航空物探遥感中心主办
地质出版社出版

内陆与近岸水体的色度学遥感研究进展

李恺霖, 廖廓, 党皓飞. 2023. 内陆与近岸水体的色度学遥感研究进展. 自然资源遥感, 35(1): 15-26. doi: 10.6046/zrzyyg.2022009
引用本文: 李恺霖, 廖廓, 党皓飞. 2023. 内陆与近岸水体的色度学遥感研究进展. 自然资源遥感, 35(1): 15-26. doi: 10.6046/zrzyyg.2022009
LI Kailin, LIAO Kuo, DANG Haofei. 2023. Recent progress in chromaticity remote sensing of inland and nearshore water bodies. Remote Sensing for Natural Resources, 35(1): 15-26. doi: 10.6046/zrzyyg.2022009
Citation: LI Kailin, LIAO Kuo, DANG Haofei. 2023. Recent progress in chromaticity remote sensing of inland and nearshore water bodies. Remote Sensing for Natural Resources, 35(1): 15-26. doi: 10.6046/zrzyyg.2022009

内陆与近岸水体的色度学遥感研究进展

  • 基金项目:

    中国气象局创新发展专项“基于风云卫星的‘海上丝绸之路’海雾业务化监测关键技术研究”(CXFZ2022P010)

    华东区域气象科技协同创新基金项目“葵花-8卫星海雾(白天)业务化监测技术研究”(QYHZ202110)

详细信息
    作者简介: 李恺霖(1989-),男,工程师,主要从事遥感应用研究。Email: likailing2008@126.com
  • 中图分类号: TP79

Recent progress in chromaticity remote sensing of inland and nearshore water bodies

  • 水色是人眼受悬浮颗粒物、叶绿素和可溶性有机物等多种物质复合影响的水体颜色最直观的感知,是具有悠久历史的水环境参量。水色对于研究内陆与近岸水体的生态具有十分重要的意义。随着色度学的研究及高光谱卫星遥感技术的进步,发展出水色的色度学方法。通过系统回顾内陆与近岸水体色度学研究的发展过程,从表观光学量和固有光学量2个角度阐述了色度学方法从理论到实际应用的情况。并介绍了卫星遥感数据的色度学处理方法。色度学方法是水色定量表达的技术方法,是水色研究的重要分支,也是对水色组分研究的扩展和补充,具有广阔的应用前景。未来,为了进一步提高色度学方法在内陆与近岸水体中的应用,需要加强水体生物-光学数据集的建设。从表观光学量和固有光学量2个维度开展色度学研究。同时加强国产卫星色度学方法的研究,扩展水色产品类型。
  • 加载中
  • [1]

    Wernand M R, Novoa S, van der Woerd H, et al. A centuries-long history of participatory science in optical oceanography:From observation to interpretation of natural water colouring[J]. History of Oceanography Yearbook, 2014, 19(20):61-90.

    [2]

    Wernand M R. Poseidon’s paintbox:Historical archives of ocean colour in global-change perspective[D]. Utrecht: Utrecht University, 2011.

    [3]

    Wernand M R, van der Woerd H J. Spectral analysis of the Forel-Ule ocean colour comparator scale[J]. Journal of the European Optical Society-Rapid Publications, 2010, 5(10014S):1-7.

    [4]

    Wernand M R, Hommersom A, van der Woerd H J. MERIS-based ocean colour classification with the discrete Forel-Ule scale[J]. Ocean Science, 2013, 9(3):477-487.

    [5]

    Wernand M R, Woerd H J, Gieskes W C. Trends in ocean colour and chlorophyll concentration from 1889 to present[J]. PLOS ONE, 2013, 8(6):1-20.

    [6]

    Arthur D B. A critical review of the development of the CIE1931 RGB color-matching functions[J]. Color Research and Application, 2004, 29(4),267-272.

    [7]

    中国计量科学研究院. GB/T3977—2008.颜色的表示方法[S]. 北京: 中国标准出版社, 2008.

    [8]

    National Institute of Metrology. GB/T3977—2008[S]. Beijing: China Standards Publishing House, 2008.

    [9]

    贾婉丽. Photoshop中的色彩空间转换[D]. 西安: 西安理工大学, 2002.

    [10]

    Jia W L. Color conversions in Photoshop[D]. Xi’an: Xi’an University of Technology, 2022.

    [11]

    唐军武, 陈清莲, 谭世祥, 等. 海洋光谱测量与数据分析处理方法[J]. 海洋通报, 1998, 17(1):71-79.

    [12]

    Tang J W, Chen Q L, Tang S X, et al. Method of oceanic spectral data measurement and analysis[J]. Marine Science Bulletin, 1998, 17(1):71-79.

    [13]

    唐军武, 田国良, 汪小勇, 等. 水体光谱测量与分析Ⅰ:水面以上测量法[J]. 遥感学报, 2004, 8(1):37-44.

    [14]

    Tang J W, Tian G L, Wang X Y, et al. The methods of water spectra measurement and analysis Ⅰ:Above-water method[J]. Journal of Remote Sensing, 2004, 8(1):37-44.

    [15]

    Woerd H J, Wernand M R. True colour classification of natural waters with medium-spectral resolution satellites:SeaWiFS,MODIS,MERIS and OLCI[J]. Sensors, 2015, 15(10):25663-25680.

    [16]

    Woerd H J, Wernand M R. Hue-angle product for low to medium spatial resolution optical satellite sensors[J]. Remote Sensing, 2018, 10(2):180-198.

    [17]

    Novoa S, Wernand M R, van der Woerd H J. The Forel-Ule scale revisited spectrally:Preparation protocol,transmission measurements and chromaticity[J]. Journal of the European Optical Society-Rapid publications, 2013(13057):1-8.

    [18]

    Pitarch J, Bellacicco M, Marullo S, et al. Global maps of Forel-Ule index,hue angle and Secchi disk depth derived from twenty-one years of monthly ESA-OC-CCI data[J]. Earth System Science Data Discussions, 2020(13):1-17.

    [19]

    Stomp M, Huisman J, Stal L J, et al. Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule[J]. The ISME Journal, 2007, 1(4):271-282.

    [20]

    Holtrop T, Huisman J, Stomp M, et al. Vibrational modes of water predict spectral niches for photosynthesis in lakes and oceans[J]. Nature Ecology and Evolution, 2021, 5(1):55-66.

    [21]

    Haverkamp T H A. Shades of red and green:The colorful diversity and ecology of picocyanobacteria in the Baltic Sea[D]. Amsterdam: Royal Netherlands Academy of Arts and Sciences, 2008.

    [22]

    Rueffler C, van Dooren T J M, Leimar O, et al. Disruptive selection and then what?[J]. Trends in Ecology and Evolution, 2006, 21(5):238-245.

    [23]

    Smith R C, Goldman T. Optical properties and color of Lake Tahoe and crater lake[J]. Limnology and Oceanography, 1973, 18(2):189-199.

    [24]

    Alfoldi T T, Munday J C. Water quality analysis by digital chromaticity mapping of Landsat data[J]. Canadian Journal of Remote Sensing, 1978, 4(2):108-126.

    [25]

    Jaquet J, Zand B. Colour analysis of inland waters using Landsat TM data[J]. European Space Agency Monographs, 1989, 1102(11):57-67

    [26]

    Sovdat B, Kadunc M, Batic M, et al. Natural color representation of Sentinel-2 data[J]. Remote Sensing of Environment, 2019(255):392-402.

    [27]

    Jolliff J K, Lewis M D, Ladner S, et al. Observing the ocean submesoscale with enhanced-color GOES-ABI visible band data[J]. Sensors, 2019, 19(3900):1-23.

    [28]

    Novoa S, Wernand M, van der Woerd H J. WACODI:A generic algorithm to derive the intrinsic color of natural waters from digital images[J]. Limnology and Oceanography:Methods, 2015, 13(12):697-711.

    [29]

    Novoa S, Wernand M R, van der Woerd H J. The modern Forel-Ule scale:A “Do-it-yourself” colour comparator for water monitoring[J]. Journal of the European Optical Society-Rapid Publications, 2014, 9(14025):1-10.

    [30]

    Busch J A, Price I, Jeansou E, et al. Citizens and satellites:Assessment of phytoplankton dynamics in a NW Mediterranean aquaculture zone[J]. International Journal of Applied Earth Observation and Geoinformation, 2016(47):40-49.

    [31]

    Busch J A, Bardaji R, Ceccaroni L, et al. Citizen bio-optical observations from coast-and ocean and their compatibility with ocean colour satellite measurements[J]. Remote Sensing, 2016, 8(11):879.

    [32]

    Malthus T J, Ohmsen R, Woerd H J. An evaluation of citizen science smartphone APPs for inland water quality assessment[J]. Remote Sensing, 2020, 12(1578):1-20.

    [33]

    段洪涛, 罗菊花, 曹志刚, 等. 流域水环境遥感研究进展与思考[J]. 地理科学进展, 2019, 38(8):1182-1195.

    [34]

    Duan H T, Luo J H, Cao Z G, et al. Progress in remote sensing of aquatic environments at the watershed scale[J]. Progress in Geography, 2019, 38(8):1182-1195.

    [35]

    段洪涛, 曹志刚, 沈明, 等. 湖泊遥感研究进展与展望[J]. 遥感学报, 26(1):3-18.

    [36]

    Duan H T, Cao Z G, Shen M, et al. Review of lake remote sensing research[J]. National Remote Sensing Bulletin, 2019, 26(1):3-18.

    [37]

    Garaba S P, Friedrichs A, Vo? D, et al. Classifying natural waters with the Forel-Ule colour index system:Results,applications,correlations and crowdsourcing[J]. International Journal of Environmental Research and Public Health, 2015, 12(12):16096-16109.

    [38]

    Garaba S P, Vo? D, Zielinski O. Physical,bio-optical state and correlations in North-Western European Shelf Seas[J]. Remote Sensing, 2014, 6(6):5042-5066.

    [39]

    Woerd H J, Wernand M R, Peters M et al. True color analysis of natural waters with SeaWiFS,MODIS,MERIS and OLCI by SNAP[C]// Ocean Optics Conference, 2016.

    [40]

    Pitarch J, van der Woerd H J, Brewin R J W, et al. Optical properties of Forel-Ule water types deduced from 15 years of global satellite ocean color observations[J]. Remote Sensing of Environment, 2019(231):1-16.

    [41]

    Petus C, Waterhouse J, Lewis S, et al. A flood of information:Using Sentinel-3 water colour products to assure continuity in the monitoring of water quality trends in the Great Barrier Reef (Australia)[J]. Journal of Environmental Management, 2019(248):1-20.

    [42]

    Nie Y, Guo J, Sun B, et al. An evaluation of apparent color of seawater based on the in-situ and satellite-derived Forel-Ule color scale[J]. Estuarine,Coastal and Shelf Science, 2020(246):1-10.

    [43]

    Sung T, Kim Y J, Choi H, et al. Spatial downscaling of ocean colour-climate change initiative (OC-CCI) Forel-Ule index using GOCI satellite image and machine learning technique[J]. Korean Journal of Remote Sensing, 2021, 37(5-1):959-974.

    [44]

    Zhan J, Zhang D J, Zhou G Q, et al. MODIS-based research on Secchi disk depth using an improved Semianalytical algorithm in the Yellow Sea[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021(14):5964-5972.

    [45]

    Li M J, Sun Y H, Li X J et al. An improved eutrophication assessment algorithm of estuaries and coastal waters in Liaodong Bay[J]. Remote Sensing, 2021, 13(19):3866-3884.

    [46]

    Wang S, Li J, Shen Q, et al. MODIS-based radiometric color extraction and classification of inland water with the Forel-Ule scale:A case study of Lake Taihu[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 8(2):907-918.

    [47]

    Li J, Wang S, Wu Y, et al. MODIS observations of water color of the largest 10 lakes in China between 2000 and 2012[J]. International Journal of Digital Earth, 2016, 9(8):788-805.

    [48]

    Wang S, Li J, Zhang B, et al. Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index[J]. Remote Sensing of Environment, 2018(217):444-460.

    [49]

    王胜蕾. 基于水色指数的大范围长时序湖库水质遥感监测研究[D]. 北京: 中国科学院大学, 2018.

    [50]

    Wang S L. Large-scale and long-time water quality remote sensing monitoring over lakes based on water color index[D]. Beijing: University of Chinese Academy of Sciences, 2018.

    [51]

    Lehmann M K, Nguyen U, Allan M, et al. Colour classification of 1 486 lakes across a wide range of optical water types[J]. Remote Sensing, 2018, 10(8):1273.

    [52]

    Jafar S M, Bowers D G, Griffiths J W. Remote sensing observations of ocean colour using the traditional Forel-Ule scale[J]. Estuarine,Coastal and Shelf Science, 2018(215):52-58.

    [53]

    Wang S, Li J, Zhang B, et al. Changes of water clarity in large lakes and reservoirs across China observed from long-term MODIS[J]. Remote Sensing of Environment, 2020(247):1-17.

    [54]

    Chen Q, Huang M, Tang X. Eutrophication assessment of seasonal urban lakes in China Yangtze River basin using Landsat8-derived Forel-Ule index:A six-year (2013—2018) observation[J]. Science of the Total Environment, 2020(745):135392-135392.

    [55]

    许杨. 基于Landsat的长江中下游流域湖泊水体颜色长时序变化研究[D]. 武汉: 武汉大学, 2020.

    [56]

    Xu Y. Study on the long-term change of lacustrine water color in the middle and lower basins of the Yangtze river based on Landsat datasets[D]. Wuhan: Wuhan University, 2020.

    [57]

    许杨, 王野, 陆建忠, 等. 基于FUI模型的柬埔寨洞里萨湖水体颜色研究[J]. 华中师范大学学报(自然科学版), 2020, 54(3):454-462.

    [58]

    Xu Y, Wang Y, Lu J Z, et al. Study on water color of Tonle Sap Lake in Cambodia based on FUI model[J]. Journal of Central China Normal University(Natural Science), 2020, 54(3):454-462.

    [59]

    王野. 基于多源遥感数据的洞里萨湖水环境长时序动态过程研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    [60]

    Wang Y. Research on long-time dynamic process of Tonle Sap Lake water environment based on multi-source remote sensing data[D]. Harbin: Harbin Institute of Technology, 2020.

    [61]

    曹畅, 王胜蕾, 李俊生, 等. 基于MODIS数据的全国144个重点湖库营养状态监测:以2018年夏季为例[J]. 湖泊科学, 2018, 33(2):405-413.

    [62]

    Cao C, Wang S L, Li J S, et al. MODIS-based monitoring of spatial distribution of trophic status in 144 key lakes and reservoirs of China in summer of 2018[J]. Journal of Lake Sciences, 2018, 33(2):405-413.

    [63]

    姜倩. 卫星遥感在湖库水质监测中的有效性评价方法研究——以GF-1号卫星为例[D]. 兰州: 兰州交通大学, 2020.

    [64]

    Jiang Q. Study on the effectiveness evaluation method of satellite remote sensing in the monitoring of lake and reservoir water quality:Take GF-1 satellite as an example[D]. Lanzhou: Lanzhou Jiaotong University, 2020.

    [65]

    温爽, 王桥, 李云梅, 等. 基于高分影像的城市黑臭水体遥感识别:以南京为例[J]. 环境科学, 2018, 39(1):57-67.

    [66]

    Wen S, Wang J, Li Y M, et al. Remote sensing identification of urban black-odor water bodies based on high-resolution images:A case study in Nanjing[J]. Environmental Science, 2018, 39(1):57-67.

    [67]

    杨子谦, 刘怀庆, 吕恒, 等. 基于高分影像的城市水体遥感综合分级方法[J]. 环境科学, 2021, 42(5):2213-2222.

    [68]

    Yang Z Q, Liu H Q, Lyu H, et al. A comprehensive classification method of urban water by remote sensing based on high-resolution images[J]. Environmental Science, 2021, 42(5):2213-2222.

    [69]

    Zhao Y, Shen Q, Wang Q, et al. Recognition of water colour anomaly by using hue angle and Sentinel 2 image[J]. Remote Sensing, 2020, 12(4):716-737.

    [70]

    Sathyendranath S, Brewin B, Mueller D, et al. Ocean colour climate change initiative:Approach and initial results[C]// 2012 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2012:2024-2027.

    [71]

    Jackson T, Chuprin A, Sathyendranath S, et al. Ocean colour climate change initiative (OC_CCI)-interim phase[R]. Plymouth: Plymouth Marine Laboratory, 2020.

    [72]

    张兵, 李俊生, 申茜, 等. 长时序大范围内陆水体光学遥感研究进展[J]. 遥感学报, 2021, 25(1):37-52.

    [73]

    Zhang B, Li J S, Shen Q, et al. Recent research progress on long time series and large scale optical remote sensing of inland water[J]. National Remote Sensing Bulletin, 2021, 25(1):37-52.

    [74]

    Wang S, Li J, Zhang W, et al. A dataset of remote-sensed Forel-Ule index for global inland waters during 2000—2018[J]. Scientific Data, 2021, 8(1):1-10.

    [75]

    Boyce D G, Lewis M, Worm B. Integrating global chlorophyll data from 1890 to 2010[J]. Limnology and Oceanography:Methods, 2012(10):840-852.

    [76]

    Dutkiewicz S, Hickman A E, Jahn O, et al. Ocean colour signature of climate change[J]. Nature Communications, 2019, 10(1):1-13.

    [77]

    邢小罡, 赵冬至, 刘玉光, 等. 叶绿素a荧光遥感研究进展[J]. 遥感学报, 2007, 11(1):137-144.

    [78]

    Xing X G, Zhao D Z, Liu Y G, et al. Process in fluorescence remote sensing of chlorophy-a[J]. Journal of Remote Sensing, 2007, 11(1):137-144.

    [79]

    Lee Z P. Remote sensing of inherent optical properties:Fundamentals,tests of algorithms,and applications[R]. Dartmouth: International Ocean-Colour Coordinating Group, 2006.

    [80]

    Friedrichs A, Busch J A, van der Woerd H J, et al. SmartFluo:A method and affordable adapter to measure chlorophyll a fluorescence with smartphones[J]. Sensors, 2017, 17(4):678.

    [81]

    Pozdnyakov D V, Kondratyev K Y. Numerical modelling of natural water colour:Implications for remote sensing and limnological studies[J]. International Journal of Remote Sensing, 1998, 19(10):1913-1932.

    [82]

    Wo?niak S B, Meler J. Modelling water colour characteristics in an optically complex nearshore environment in the Baltic Sea:Quantitative interpretation of the Forel-Ule scale and algorithms for the remote estimation of seawater composition[J]. Remote Sensing, 2020,(12):2851-2885.

    [83]

    Bukata R P, Jerome J H, Kondratyev K Y, et al. IEEE Conference on Computer Vision and Pattern Recognition.[J]. Journal of Great Lakes Research, 1997, 23(3):254-269.

    [84]

    Leech D M, Pollard A I, Labou S G, et al. Fewer blue lakes and more murky lakes across the continental US:Implications for planktonic food webs[J]. Limnology and Oceanography, 2018, 63(6):2661-2680.

    [85]

    Ting C S, Rocap G, King J, et al. Cyanobacterial photosynthesis in the oceans:The origins and significance of divergent light-harvesting strategies[J]. Trends in Microbiology, 2002, 10(3):134-142.

    [86]

    Croce R, van Amerongen H. Natural strategies for photosynthetic light harvesting[J]. Nature Chemical Biology, 2014, 10(7):492-501.

    [87]

    Monteith D T, Stoddard J L, Evans C D, et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry[J]. Nature, 2007, 450(7169):537-540.

    [88]

    Weyhenmeyer G A, Müller R A, Norman M, et al. Sensitivity of freshwaters to browning in response to future climate change[J]. Climatic Change, 2016, 134(1-2):225-239.

    [89]

    Kritzberg E S. Centennial-long trends of lake browning show major effect of afforestation[J]. Limnology and Oceanography Letters, 2017, 2(4):105-112.

    [90]

    Urrutia C P, Ekvall M K, Ratcovich J, et al. Phytoplankton diversity loss along a gradient of future warming and brownification in freshwater mesocosms[J]. Freshwater Biology, 2017, 62(11):1869-1878.

    [91]

    Wilken S, Soares M, Pablo U C, et al. Primary producers or consumers? Increasing phytoplankton bacterivory along a gradient of lake warming and browning[J]. Limnology and Ceanography, 2018(63):S142-S155.

    [92]

    FeuchtmayrH, Pottinger T G, Moore A, et al. Effects of brownification and warming on algal blooms,metabolism and higher trophic levels in productive shallow lake mesocosms[J]. Science of the Total Environment, 2019, 678:227-238.

    [93]

    Deininger A, Faithfull C L, Bergstr?m A K. Phytoplankton response to whole lake inorganic N fertilization along a gradient in dissolved organic carbon[J]. Ecology, 2017, 98(4):982-994.

    [94]

    Tan X, Zhang D, Duan Z, et al. Effects of light color on interspecific competition between microcystis aeruginosa and chlorella pyrenoidosa in batch experiment[J]. Environmental Science and Pollution Research, 2020, 27(1):344-352.

    [95]

    Luimstra V M, Verspagen J M H, Xu T, et al. Changes in water color shift competition between phytoplankton species with contrasting light-harvesting strategies[J]. Ecology, 2020, 101(3):1-17.

    [96]

    李云梅, 赵焕, 毕顺, 等. 基于水体光学分类的二类水体水环境参数遥感监测进展[J]. 遥感学报, 2022, 26(1):19-31.

    [97]

    Li Y M, Zhao H, Bi S, et al. Research progress of remote sensing monitoring of case II water environmental parameters based on water optical classification[J]. National Remote Sensing Bulletin, 2022, 26(1): 19-31.

  • 加载中
计量
  • 文章访问数:  1194
  • PDF下载数:  215
  • 施引文献:  0
出版历程
收稿日期:  2022-01-12
修回日期:  2023-03-15
刊出日期:  2023-03-20

目录