中国自然资源航空物探遥感中心主办
地质出版社出版

基于边界信息的多尺度遥感影像分割质量非监督评价方法

苏腾飞. 2023. 基于边界信息的多尺度遥感影像分割质量非监督评价方法. 自然资源遥感, 35(1): 35-40. doi: 10.6046/zrzyyg.2021444
引用本文: 苏腾飞. 2023. 基于边界信息的多尺度遥感影像分割质量非监督评价方法. 自然资源遥感, 35(1): 35-40. doi: 10.6046/zrzyyg.2021444
SU Tengfei. 2023. A unsupervised quality valuation method for multi-scale remote sensing image segmentation based on boundary information. Remote Sensing for Natural Resources, 35(1): 35-40. doi: 10.6046/zrzyyg.2021444
Citation: SU Tengfei. 2023. A unsupervised quality valuation method for multi-scale remote sensing image segmentation based on boundary information. Remote Sensing for Natural Resources, 35(1): 35-40. doi: 10.6046/zrzyyg.2021444

基于边界信息的多尺度遥感影像分割质量非监督评价方法

  • 基金项目:

    内蒙古自治区高等学校科学研究项目“对象级主动学习的河套灌区遥感作物分类算法研究”(NJZY22495)

    与国家自然科学基金项目“面向对象的河套灌区遥感作物分类算法研究”(61701265)

详细信息
    作者简介: 苏腾飞(1987-),男,硕士,主要研究方向为面向对象图像分析算法及农田遥感应用。Email: stf1987imau.edu.cn
  • 中图分类号: TP79

A unsupervised quality valuation method for multi-scale remote sensing image segmentation based on boundary information

  • 多尺度分割是高分辨率遥感影像信息提取的关键步骤,但是如何评价分割质量、量化分割错误一直是具有挑战性的课题。本文在边界强度信息的基础上,构建了一种非监督的分割评价方法,用于多尺度遥感影像分割的最优尺度参数选择与局部分割质量评价。分割错误包括过分割与亚分割2种,该文利用归一化边界梯度特征,分别对2类分割错误进行了建模。对过分割错误的估计考虑了斑块边缘的梯度信息,而对亚分割错误的评估运用了斑块内部梯度信息。为了验证所提出的方法,利用2景高分辨率遥感影像,开展了多尺度分割结果的评价实验,所提出方法的分割评价与实际分割效果吻合度较高。结果表明,该文方法可以有效反映斑块的过分割与亚分割错误。
  • 加载中
  • [1]

    Hossain M, Chen D. Segmentation for object-based image analysis(OBIA):A review of algorithms and challenges from remote sensing perspective[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150(1):115-134.

    [2]

    Beauchemin M. Semi-supervised map regionalization for categorical data[J]. International Journal of Remote Sensing, 2019, 40(24):9401-9411.

    [3]

    Xiang D, Wang W, Tang T, et al. Adaptive statistical superpixel merging with edge penalty for polsar image segmentation[J]. IEEE Transactions on Geo-scienceand Remote Sensing, 2019, 58(4):2412-2429.

    [4]

    Zhang M, Xue Y, Ge Y, et al. Watershed segmentation algorithm based on luv color space region merging for extracting slope hazard boundaries[J]. ISPRS International Journal of Geo-Information, 2020, 9(4):246.

    [5]

    Su T F, Liu T X, Zhang S W, et al. Machine learning-assisted region merging for remote sensing image segmentation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 168(1):89-123.

    [6]

    张大明, 张学勇, 李璐, 等. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 国土资源遥感, 2022, 34(1):53-60.doi:10.6046/gtzyyg.2021089.

    [7]

    Zhang D M, Zhang X Y, Li L, et al. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Land and Resources, 2022, 34(1):53-60.doi:10.6046/gtzyyg.2021089.

    [8]

    Baatz M, Sch?pe A. Multiresolution segmentation:An optimizing approach for high quality multi-scale segmentation[C]. Angewandte Geographich Informationsverarbeitung, 2000,XII,12-23.

    [9]

    范莹琳, 娄德波, 张长青, 等. 基于面向对象的铁尾矿信息提取技术研究——以迁西地区北京二号遥感影像为例[J]. 自然资源遥感, 2021, 33(4):153-161.doi:10.6046/zrzyyg.2021027.

    [10]

    Fan Y L, Lou D B, Zhang C Q, et al. Information extraction technologies of iron mine tailings based on object-oriented classification:A case study of Beijing-2 remote sensing images of the Qianxi Area,Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4):153-161.doi:10.6046/zrzyyg.2021027.

    [11]

    王华, 李卫卫, 李志刚, 等. 基于多尺度超像素的高光谱图像分类研究[J]. 自然资源遥感, 2021, 33(3):63-71.doi:10.6046/zrzyyg.2020344.

    [12]

    Wang H, Li W W, Li Z G, et al. Hyperspectral image classification based on multiscale superpixels[J]. Remote Sensing for Natural Resources, 2021, 33(3):63-71.doi:10.6046/zrzyyg.2020344.

    [13]

    Costa H, Foody G M, Boyd D S. Supervised methods of image segmentation accuracy assessment in land cover mapping[J]. Remote Sensing of Environment, 2018, 205(2):338-351.

    [14]

    Witharana C, Civco D L. Optimizing multi-resolution segmentation scale using empirical methods:Exploring the sensitivity of the supervised discrepancy measure euclidean distance 2(ED2)[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 87(1):108-121.

    [15]

    Su T F, Zhang S W. Multi-scale segmentation method based on binary merge tree and class label information[J]. IEEE Access, 2018, 6(1):17801-17816.

    [16]

    Su T F, Zhang S W. Local and global evaluation for remote sensing image segmentation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130(1):256-276.

    [17]

    Johnson B, Xie Z. Unsupervised image segmentation evaluation and refinement using a multi-scale approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(1):473-483.

    [18]

    Yang J, He Y, Weng Q. An automated method to parameterize segmentation scale by enhancing intrasegment homogeneity and intersegment heterogeneity[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(6):1282-1286.

    [19]

    Troya-Galvis A, Gan?arski P, Passat N, et al. Unsupervised quantification of under- and over-segmentation for object-based remote sensing image analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 8(5):1936-1945.

    [20]

    Su T F. Unsupervised evaluation-based region merging for high resolution remote sensing image segmentation[J]. GIScience & Remote Sensing, 2019, 56(6):811-842.

  • 加载中
计量
  • 文章访问数:  644
  • PDF下载数:  80
  • 施引文献:  0
出版历程
收稿日期:  2021-12-15
修回日期:  2023-03-15
刊出日期:  2023-03-20

目录