中国自然资源航空物探遥感中心主办
地质出版社出版

基于高分六号卫星数据的红树林提取方法

许青云, 李莹, 谭靖, 张哲. 2023. 基于高分六号卫星数据的红树林提取方法. 自然资源遥感, 35(1): 41-48. doi: 10.6046/zrzyyg.2022048
引用本文: 许青云, 李莹, 谭靖, 张哲. 2023. 基于高分六号卫星数据的红树林提取方法. 自然资源遥感, 35(1): 41-48. doi: 10.6046/zrzyyg.2022048
XU Qingyun, LI Ying, TAN Jing, ZHANG Zhe. 2023. Information extraction method of mangrove forests based on GF-6 data. Remote Sensing for Natural Resources, 35(1): 41-48. doi: 10.6046/zrzyyg.2022048
Citation: XU Qingyun, LI Ying, TAN Jing, ZHANG Zhe. 2023. Information extraction method of mangrove forests based on GF-6 data. Remote Sensing for Natural Resources, 35(1): 41-48. doi: 10.6046/zrzyyg.2022048

基于高分六号卫星数据的红树林提取方法

  • 基金项目:

    海南省重大科技计划项目“海量遥感数据库模块与生态监管集成模块代码开发”(ZDKJ2019006)

详细信息
    作者简介: 许青云(1989-),女,硕士,高级工程师,注册测绘师,主要从事定量遥感、图像分析处理、3S软件产品设计和应用研究。Email: nishang_dale@126.com
  • 中图分类号: TP79

Information extraction method of mangrove forests based on GF-6 data

  • 红树林具有定期被潮水淹没的特点,这个特点对于利用遥感技术手段提取红树林来说既是机遇也是挑战。为探究在任意潮汐条件下,高分六号(GF-6)卫星数据的红边波段在红树林提取上的贡献度,以海南省最大的红树林区域东寨港东南区为研究区域,利用高分二号(GF-2)卫星数据获取标准样本点。以研究区的标准样本点和高分六号数据为基础,构建典型地物反射光谱曲线图,由植被强吸收的波段建立基线,基线之上反射率的平均值定义了适用于高分六号卫星数据的潮间红树林指数(intertidal mangrove forest index,IMFI),同时建立了红边归一化植被指数(red-edge normalized difference vegetation index,RENDVI),这2种指数与归一化植被指数(normalized difference vegetation index,NDVI)和归一化水体指数(normalized difference water index,NDWI)等常用指数通过箱线图进行对比分析,并基于IMFI和RENDVI构建决策树模型对研究区的典型红树林进行提取,提取结果与高分二号遥感数据目视解译提取的样本进行精度验证。结果表明: ①红树林周期性被潮水淹没的特点,使得潮间红树林的反射光谱曲线在水体与红树林的标准光谱曲线之间分布,且相对分散; ②IMFI和RENDVI可反映红边波段与近红外波段反射光谱的差异性,能够更好地对潮间红树林、红树林和水体进行分离; ③基于IMFI和RENDVI构建的决策树模型可有效提取红树林分布信息,其总体精度为0.95,Kappa系数为0.90。红边波段的引入在红树林提取上发挥了重要作用,具有很大的应用潜力,为国产红边卫星数据在生态方面的应用提供参考。
  • 加载中
  • [1]

    张乔民, 隋淑珍. 中国红树林湿地资源及其保护[J]. 自然资源学报, 2001, 16(1):28-36.

    [2]

    Zhang Q M, Sui S Z. The mangrove wetland resources and their conservation in China[J]. Journal of Natural Resources, 2001, 16(1):28-36.

    [3]

    章恒, 王世新, 周艺, 等. 多源遥感影像红树林信息提取方法比较[J]. 湿地科学, 2015, 13(2):145-152.

    [4]

    Zhang H, Wang S X, Zhou Y, et al. Comparison of different metho-ds of mangrove extraction from multi-source remote sensing images[J]. Wetland Science, 2015, 13(2):145-152.

    [5]

    但新球, 廖宝文, 吴照柏, 等. 中国红树林湿地资源、保护现状和主要威胁[J]. 生态环境学报, 2016, 25(7):1237-1243.

    [6]

    Dan X Q, Liao B W, Wu Z B, et al. Resources,conservation status and main threats of mangrove wetlands in China[J]. Ecology and Environmental Sciences, 2016, 25(7):1237-1243.

    [7]

    Heumann B W. An object-based classification of mangroves using a hybrid decision tree-support vector machine approach[J]. Remote Sensing, 2011, 3(11):2440-2460.

    [8]

    Cardenas N Y, Joyce K E, Maier S W. Monitoring mangrove forests: Are we taking full advantage of technology?[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 63(7):1-14.

    [9]

    Heumann B W. Satellite remote sensing of mangrove forests: Recent advances and future opportunities[J]. Progress in Physical Geography: Earth and Environment, 2011, 35(1):87-108.

    [10]

    Wang T, Zhang H S, Lin H, et al. Textural-spectral feature-based species classification of mangroves in Mai Po Nature Reserve from Worldview-3 imagery[J]. Remote Sensing, 2016, 8(1):24.

    [11]

    Mondal P, Liu X, Fatoyinbo T E, et al. Evaluating combinations of Sentinel-2 data and machine-learning algorithms for mangrove mapping in West Africa[J]. Remote Sensing, 2019, 11(24):2928.

    [12]

    蒙良莉. 基于哨兵多源遥感数据的红树林信息提取算法研究[D]. 南宁: 南宁师范大学, 2020.

    [13]

    Meng L L. Mangrove information extraction algorithm based on multi-source remote sensing data of sentinel[D]. Nanning: Nanning Normal University, 2020.

    [14]

    Jia M M, Wang Z M, Wang C, et al. A new vegetation index to detect periodically submerged mangrove forest using single-tide Sentinel-2 imagery[J]. Remote Sensing, 2019, 11(17):2043.

    [15]

    Farid M F. Comparison of different vegetation indices for assessing mangrove density using Sentinel-2 imagery[J]. International Journal of GEOMATE, 2018, 14(45):42-51.

    [16]

    Baloloy A B, Blanco A C, Ana R R C S, et al. Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166:95-117.

    [17]

    Manna S, Raychaudhuri B. Retrieval of leaf area index and stress conditions for Sundarban mangroves using Sentinel-2 data[J]. International Journal of Remote Sensing, 2020, 41(3):1019-1039.

    [18]

    徐芳, 张英, 翟亮, 等. 基于Sentinel-2的潮间红树林提取方法[J]. 测绘通报, 2020(2):49-54.

    [19]

    Xu F, Zhang Y, Zhai L, et al. Extraction method of intertidal mangrove by using Sentinel-2 images[J]. Bulletin of Surveying and Mapping, 2020(2):49-54.

    [20]

    Filella I, Penuelas J. The red edge position and shape as indicators of plant chlorophyll content,biomass and hydric status[J]. International Journal of Remote Sensing, 1994, 15(7):1459-1470.

    [21]

    王利军, 郭燕, 王来刚, 等. GF6卫星红边波段对春季作物分类精度的影响[J]. 河南农业科学, 2020, 49(6):165-173.

    [22]

    Wang L J, Guo Y, Wang L G, et al. Impact of red-edge waveband of GF6 satellite on classification accuracy of spring crops[J]. Journal of Henan Agricultural Sciences, 2020, 49(6):165-173.

    [23]

    梁继, 郑镇炜, 夏诗婷, 等. 高分六号红边特征的农作物识别与评估[J]. 遥感学报, 2020, 24(10):1168-1179.

    [24]

    Liang J, Zheng Z W, Xia S T, et al. Crop recognition and evaluation using red edge features of GF-6 satellite[J]. Journal of Remote Sensing, 2020, 24(10):1168-1179.

    [25]

    姚保民, 王利民, 王铎, 等. 高分六号卫星WFV新增谱段对农作物识别精度的改善[J]. 卫星应用, 2020(12):31-34.

    [26]

    Yao B M, Wang L M, Wang D, et al. Improvement of the accuracy of crop recognition by the newly added spectrum of the GF-6 satellite WFV[J]. Satellite Application, 2020(12):31-34.

    [27]

    张沁雨, 李哲, 夏朝宗, 等. 高分六号遥感卫星新增波段下的树种分类精度分析[J]. 地球信息科学学报, 2019, 21(10):1619-1628.

    [28]

    Zhang Q Y, Li Z, Xia C Z, et al. Tree species classification based on the new bands of GF-6 remote sensing satellite[J]. Journal of Geo-Information Science, 2019, 21(10):1619-1628.

    [29]

    Xia Q, Qin C Z, Li H, et al. Mapping mangrove forests based on multi-tidal high-resolution satellite imagery[J]. Remote Sensing, 2018, 10(9):1343.

    [30]

    Zhang X H, Treitz P M, Chen D M, et al. Mapping mangrove forests using multi-tidal remotely-sensed data and a decision-tree-based procedure[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 62:201-214.

    [31]

    Rogers K, Lymburner L, Salum R, et al. Mapping of mangrove extent and zonation using high and low tide composites of Landsat data[J]. Hydrobiologia, 2017, 803(1):49-68.

    [32]

    Jia M M, Wang Z M, Zhang Y Z, et al. Landsat-based estimation of mangrove forest loss and restoration in Guangxi Province,China,influenced by human and natural factors[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(1):311-323.

    [33]

    Jia M M, Wang Z M, Zhang Y Z, et al. Monitoring loss and recovery of mangrove forests during 42 years: The achievements of mangrove conservation in China[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 73:535-545.

    [34]

    陆春玲, 白照广, 李永昌, 等. 高分六号卫星技术特点与新模式应用[J]. 航天器工程, 2021, 30(1):7-14.

    [35]

    Lu C L, Bai Z G, Li Y C, et al. Technical characteristic and new mode applications of GF-6 satellite[J]. Spacecraft Engineering, 2021, 30(1):7-14.

    [36]

    张威, 陈正华, 王纪坤. 广西北部湾海岸带红树林变化的遥感监测[J]. 广西大学学报(自然科学版), 2015, 40(6):1570-1576.

    [37]

    Zhang W, Chen Z H, Wang J K. Monitoring the areal variation of mangrove in Beibu Gulf coast of Guangxi China with remote sensing data[J]. Journal of Guangxi University (Natural Science Edition), 2015, 40(6):1570-1576.

    [38]

    Pettorelli N, Ryan S, Mueller T, et al. The normalized difference vegetation index (NDVI):Unforeseen successes in animal ecology[J]. Climate Research, 2011, 46(1):15-27.

    [39]

    Gao B C. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 1996, 58(3):257-266.

    [40]

    Gitelson A A, Merzlyak M N. Remote estimation of chlorophyll content in higher plant leaves[J]. International Journal of Remote Sensing, 1997, 18(12):2691-2697.

    [41]

    Gower J, Hu C M, Borstad G, et al. Ocean color satellites show extensive lines of floating sargassum in the Gulf of Mexico[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(12):3619-3625.

    [42]

    Hu C M. A novel ocean color index to detect floating algae in the global oceans[J]. Remote Sensing of Environment, 2009, 113(10):2118-2129.

    [43]

    Gao B C, Li R R. FVI-A floating vegetation index formed with three near-IR channels in the 1.0-1.24 μm spectral range for the detection of vegetation floating over water surfaces[J]. Remote Sensing, 2018, 10(9):1421.

  • 加载中
计量
  • 文章访问数:  1224
  • PDF下载数:  172
  • 施引文献:  0
出版历程
收稿日期:  2022-02-11
修回日期:  2023-03-15
刊出日期:  2023-03-20

目录