中国自然资源航空物探遥感中心主办
地质出版社出版

辽河口盐地碱蓬时空动态遥感监测及其识别机理研究

李钰彬, 王宗明, 赵传朋, 贾明明, 任春颖, 毛德华, 于皓. 2025. 辽河口盐地碱蓬时空动态遥感监测及其识别机理研究. 自然资源遥感, 37(1): 195-203. doi: 10.6046/zrzyyg.2023293
引用本文: 李钰彬, 王宗明, 赵传朋, 贾明明, 任春颖, 毛德华, 于皓. 2025. 辽河口盐地碱蓬时空动态遥感监测及其识别机理研究. 自然资源遥感, 37(1): 195-203. doi: 10.6046/zrzyyg.2023293
LI Yubin, WANG Zongming, ZHAO Chuanpeng, JIA Mingming, REN Chunying, MAO Dehua, YU Hao. 2025. Remote sensing-based monitoring and identification mechanisms of the spatiotemporal dynamics of Suaeda salsa in the Liaohe estuary, China. Remote Sensing for Natural Resources, 37(1): 195-203. doi: 10.6046/zrzyyg.2023293
Citation: LI Yubin, WANG Zongming, ZHAO Chuanpeng, JIA Mingming, REN Chunying, MAO Dehua, YU Hao. 2025. Remote sensing-based monitoring and identification mechanisms of the spatiotemporal dynamics of Suaeda salsa in the Liaohe estuary, China. Remote Sensing for Natural Resources, 37(1): 195-203. doi: 10.6046/zrzyyg.2023293

辽河口盐地碱蓬时空动态遥感监测及其识别机理研究

  • 基金项目:

    国家重点研发计划青年科学家项目“地上植被生物量广域精细多模观测技术与装备”(编号: 2022YFF1302000)、国家自然科学基金青年基金项目“基于样本扩增方法与多源卫星影像的无瓣海桑扩散进程监测方法研究”(编号: 42201422)、“基于Sentinel光学和雷达遥感影像的泥炭沼泽识别方法研究”(编号: 42101399)和第五批吉林省青年科技人才托举工程“泥炭沼泽的信息提取研究”(编号: QT202101)共同资助

详细信息
    作者简介: 李钰彬(1999-), 男, 硕士研究生, 研究方向为滨海湿地遥感。Email: 18636183172@163.com
    通讯作者: 赵传朋(1991-), 男, 副研究员, 研究方向为滨海湿地遥感。Email: zhaochuanpeng@iga.ac.cn
  • 中图分类号: TP79; |X87

Remote sensing-based monitoring and identification mechanisms of the spatiotemporal dynamics of Suaeda salsa in the Liaohe estuary, China

More Information
    Corresponding author: ZHAO Chuanpeng
  • 作为全球面积最大的红海滩景观, 监测辽河口盐地碱蓬的时空动态变化对揭示其“退养还湿”等保护措施成效具有重要意义。目前, 卫星遥感技术已广泛应用于包括盐地碱蓬在内的滨海植被识别与制图, 但现有分类方法依赖于难以解释的黑箱模型, 忽视了对识别机理的探究, 制约了相关方法的改进和发展。可解释人工智能的发展为黑箱算法的解析指出了新的方向。考虑到构成随机森林的决策规则具有可解释性, 本研究构建了一套从已训练随机森林模型中抽取最优决策规则的新方法, 最终重构得到识别盐地碱蓬的最优决策规则, 即B3/B4< 0.90且B5/B3≥1.46, 数据整体精度优于90%; 以2017—2022年的Sentinel-2影像为数据源, 实现了对辽河口盐地碱蓬的逐年动态提取, 并结合质心迁移法, 分析了“退养还湿”工程实施后盐地碱蓬时空变化, 揭示了该区域盐地碱蓬呈现快速恢复的现状。
  • 加载中
  • [1]

    温广玥.1997-2018年辽河口翅碱蓬生物群落时空变化特征研究[D].北京:中国地质大学(北京), 2020.Wen G Y.Temporal and spatial variation of Suaeda salsa community in Liaohe River from 1997 to 2018[D].Beijing:China University of Geosciences, 2020.

    [2]

    Gu J, Jin R, Chen G, et al.Areal extent, species composition, and spatial distribution of coastal saltmarshes in China[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:7085-7094.

    [3]

    王旖旎, 康亚茹, 陈旭, 等.辽河口潮滩湿地景观格局空间演变的动态分析[J].大连海洋大学学报, 2021, 36(6):1009-1017.

    Wang Y N, Kang Y R, Chen X, et al.Dynamic analysis of spatial evolution of landscape pattern in the tidal flat wetlands at Liao River Estuary[J].Journal of Dalian Ocean University, 2021, 36(6):1009-1017.

    [4]

    Cao C, Su F, Song F, et al.Distribution and disturbance dynamics of habitats suitable for Suaeda salsa[J].Ecological Indicators, 2022, 140:108984.

    [5]

    邵璐, 姜华.辽宁碱蓬根际土壤真菌多样性的季节变化及其耐盐性[J].生态学报, 2016, 36(4):1050-1057.

    Shao L, Jiang H.Effect of season and variation in salinity on the rhizosphere fungal diversity of Suaeda liaotungensis[J].Acta Ecologica Sinica, 2016, 36(4):1050-1057.

    [6]

    余雪洋, 叶思源, Yuknis N, 等.辽河三角洲翅碱蓬湿地不同植被覆盖度下的土壤对碳的扣留[J].中国地质, 2014, 41(2):648-657.

    Yu X Y, Ye S Y, Yuknis N, et al.Carbon sequestration along vegetation coverage gradient in the Suaeda salsa marsh from the Liaohe Delta[J].Geology in China, 2014, 41(2):648-657.

    [7]

    何爽, 张森, 田家, 等.结合多模态数据的滨海湿地碱蓬叶面积指数无人机高光谱反演[J].遥感学报, 2023, 27(6):1441-1453.

    He S, Zhang S, Tian J, et al.UAV hyperspectral inversion of Suaeda Salsa leaf area index in coastal wetlands combined with multimodal data[J].National Remote Sensing Bulletin, 2023, 27(6):1441-1453.

    [8]

    张树文, 颜凤芹, 于灵雪, 等.湿地遥感研究进展[J].地理科学, 2013, 33(11):1406-1412.

    Zhang S W, Yan F Q, Yu L X, et al.Application of remote sensing technology to wetland research[J].Scientia Geographica Sinica, 2013, 33(11):1406-1412.

    [9]

    彭剑伟.1986-2018年辽河口滨海湿地连续变化时空格局及驱动力分析[D].长沙:中南林业科技大学, 2021.Peng J W.Spatial-temporal pattern and driving forces of continuous change of coastal wetlands in Liaohe Estuary from 1986 to 2018[D].Changsha:Central South University of Forestry and Technology, 2021.

    [10]

    Song Z, Sun Y, Chen P, et al.Assessing the ecosystem health of coastal wetland vegetation (Suaeda salsa) using the pressure state response model, a case of the Liao River Estuary in China[J].International Journal of Environmental Research and Public Health, 2022, 19(1):546.

    [11]

    王文硕.典型盐生植被群落演替退化遥感监测研究[D].大连:大连海洋大学, 2022.Wang W S.Remote sensing monitoring research on the succession and degradation of typical saline vegetation community[D].Dalian:Dalian Ocean University, 2022.

    [12]

    许晨, 卢霞, 桑瑜, 等.基于空谱融合与AlexNet算法的滨海湿地植被分类研究[J].海洋科学, 2023, 47(7):1-11.

    Xu C, Lu X, Sang Y, et al.Vegetation classification combining spatial-spectral feature fusion based on remote sensing and AlexNet algorithm in a coastal wetland[J].Marine Sciences, 2023, 47(7):1-11.

    [13]

    Vilone G, Longo L.Notions of explainability and evaluation approaches for explainable artificial intelligence[J].Information Fusion, 2021, 76:89-106.

    [14]

    Chander A, Srinivasan R.Evaluating explanations by cognitive value[J].Proceedings of the Machine Learning and Knowledge Extraction:Second IFIP TC 5, TC 8/WG 84, 89, TC 12/WG 129 International Cross-Domain Conference, CD-MAKE 2018, Hamburg, Germany, August 27-30, 2018, Proceedings 2, F, 2018 [C].Springer.

    [15]

    Tintarev N, Masthoff J.Explaining recommendations:Design and evaluation[M]//Ricci F, Rokach L, Shapira B, eds.Recommender Systems Handbook.Boston, MA:Springer US, 2015:353-382.

    [16]

    李营, 陈云浩, 陈辉, 等.GF-1 WFV影像的翅碱蓬植被指数构建[J].武汉大学学报(信息科学版), 2019, 44(12):1823-1831.

    Li Y, Chen Y H, Chen H, et al.Construction of Suaeda salsa vegetation index based on GF-1 WFV images[J].Geomatics and Information Science of Wuhan University, 2019, 44(12):1823-1831.

    [17]

    Rodriguez-Galiano V F, Ghimire B, Rogan J, et al.An assessment of the effectiveness of a random forest classifier for land-cover classification[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67:93-104.

    [18]

    Zhao C, Jia M, Wang Z, et al.Toward a better understanding of coastal salt marsh mapping:A case from China using dual-temporal images[J].Remote Sensing of Environment, 2023, 295:113664.

    [19]

    Boruah A N, Biswas S K, Bandyopadhyay S.Transparent rule generator random forest (TRG-RF):An interpretable random forest[J].Evolving Systems, 2023, 14(1):69-83.

    [20]

    Hou W, Zhang R, Xi Y, et al.The role of waterlogging stress on the distribution of salt marsh plants in the Liao River Estuary wetland[J].Global Ecology and Conservation, 2020, 23:e01100.

    [21]

    Zhao C, Jia M, Wang Z, et al.Toward a better understanding of coastal salt marsh mapping:A case from China using dual-temporal images[J].Remote Sensing of Environment, 2023, 295:113664.

    [22]

    程丽娜, 钟才荣, 李晓燕, 等.Sentinel-2密集时间序列数据和Google Earth Engine的潮间带湿地快速自动分类[J].遥感学报, 2022, 26(2):348-357.

    Cheng L N, Zhong C R, Li X Y, et al.Rapid and automatic classification of intertidal wetlands based on intensive time series Sentinel-2 images and Google Earth Engine[J].National Remote Sensing Bulletin, 2022, 26(2):348-357.

    [23]

    Maheshwari D, Garcia-Zapirain B, Sierra-Soso D.Machine learning applied to diabetes dataset using Quantum versus Classical computation[C]//2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT).December 9-11, 2020, Louisville, KY, USA.IEEE, 2020:1-6.

    [24]

    张猛, 曾永年.长株潭城市群湿地景观时空动态变化及驱动力分析[J].农业工程学报, 2018, 34(1):241-249.

    Zhang M, Zeng Y N.Temporal and spatial dynamic changes and driving forces analysis of wetland landscape of Chang-Zhu-Tan urban agglomeration[J].Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(1):241-249.

    [25]

    黄子强.鸻鹬类迁徙停歇期对翅碱蓬和潮间带湿地的栖息地利用[D].沈阳:辽宁大学, 2019.Huang Z Q.The habitate use of migrant shorebirds in Suaeda salsa salt marshes and the intertidal flats in Liaohe River delta[D].Shenyang:Liaoning University, 2019.

    [26]

    Kan Z, Chen B, Yu W, et al.Forecasting land-cover change effects on waterbirds in Xiamen Bay, China:Determining prospective species winners and losers[J].Marine Environmental Research, 2023, 188:106003.

  • 加载中
计量
  • 文章访问数:  40
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2023-09-22
修回日期:  2024-03-11

目录