中国自然资源航空物探遥感中心主办
地质出版社出版

基于日光诱导叶绿素荧光的东北林区森林碳汇估算

赵子方, 梁艾琳. 2025. 基于日光诱导叶绿素荧光的东北林区森林碳汇估算. 自然资源遥感, 37(1): 204-212. doi: 10.6046/zrzyyg.2023268
引用本文: 赵子方, 梁艾琳. 2025. 基于日光诱导叶绿素荧光的东北林区森林碳汇估算. 自然资源遥感, 37(1): 204-212. doi: 10.6046/zrzyyg.2023268
ZHAO Zifang, LIANG Ailin. 2025. Estimating forest carbon sink in the forest region of Northeast China using solar-induced chlorophyll fluorescence. Remote Sensing for Natural Resources, 37(1): 204-212. doi: 10.6046/zrzyyg.2023268
Citation: ZHAO Zifang, LIANG Ailin. 2025. Estimating forest carbon sink in the forest region of Northeast China using solar-induced chlorophyll fluorescence. Remote Sensing for Natural Resources, 37(1): 204-212. doi: 10.6046/zrzyyg.2023268

基于日光诱导叶绿素荧光的东北林区森林碳汇估算

  • 基金项目:

    江苏省基础研究计划(自然科学基金)青年基金项目“星载CO2-IPDA的高精度探测方法研究”(编号: BK20190779)和国家自然科学基金青年科学基金项目“基于星载多波长差分吸收激光雷达的二氧化碳高精度反演方法研究”(编号: 42001273)共同资助

详细信息
    作者简介: 赵子方(2000-), 男, 硕士研究生, 主要从事测绘遥感与碳排放领域研究。Email: 1192624116 @qq.com
    通讯作者: 梁艾琳(1991-), 女, 博士, 讲师, 主要从事环境遥感领域研究。Email: ireneliang@nuist.edu.cn
  • 中图分类号: X173

Estimating forest carbon sink in the forest region of Northeast China using solar-induced chlorophyll fluorescence

More Information
    Corresponding author: LIANG Ailin
  • 森林碳汇是维持地球生态平衡和应对气候变化的重要因素。森林碳汇吸收大量二氧化碳并储存碳元素, 有助于减缓气候变化, 在全球碳循环中扮演着关键角色。同时, 森林碳汇也提供了生物多样性保护、水资源调节和土壤保持等重要生态服务, 因此对于森林碳汇的估算十分重要。该文选取我国东北林区为研究区域, 基于日光诱导叶绿素荧光(solar-induced chlorophyll fluorescence, SIF)运用植被总初级生产力(gross primary productivity, GPP)作为中间变量来估算2011—2020年6—9月植被生长期的森林碳汇。结果显示: 东北林区森林碳汇与SIF在空间上存在较强相关性; 东北林区的SIF值和碳汇分布相似, 长白山地区的碳汇能力较强, 而大兴安岭地区的碳汇能力较弱; 在时间分布上, 植被生长期的6—9月, 碳汇能力总体呈先递增后递减的趋势。总的来说, 利用SIF来估算碳汇在东北林区具有较高的可行性。
  • 加载中
  • [1]

    毕君, 王超, 尤海舟.基于温室气体清单的河北省森林碳汇量研究[J].生态科学, 2016, 35(4):113-118.

    Bi J, Wang C, You H Z.Forest carbon sequestration estimation based on Greenhouse Gases Inventory in Hebei Province[J].Ecological Science, 2016, 35(4):113-118.

    [2]

    吕富成, 马建勇, 曹云, 等.基于FORCCHN模型的中国典型森林生态系统碳通量模拟[J].生态学报, 2022, 42(7):2810-2821.

    Lyu F C, Ma J Y, Cao Y, et al.Carbon fluxes simulation of China’s typical forest ecosystem based on FORCCHN model[J].Acta Ecologica Sinica, 2022, 42(7):2810-2821.

    [3]

    梅晓丹, 李丹, 王强, 等.基于Biome-BGC模型的小兴安岭森林碳通量时空分析[J].测绘与空间地理信息, 2021, 44(11):7-10.

    Mei X D, Li D, Wang Q, et al.Spatial-temporal analysis of forest carbon flux of in Xiaoxing’anling based on biome-BGC model[J].Geomatics and Spatial Information Technology, 2021, 44(11):7-10.

    [4]

    Magney T S, Bowling D R, Logan B A, et al.Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence[J].Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(24):11640-11645.

    [5]

    Wang M, Zhang L.Synchronous changes of GPP and solar-induced chlorophyll fluorescence in a subtropical evergreen coniferous forest[J].Plants, 2023, 12(11):2224.

    [6]

    Frankenberg C, Fisher J B, Worden J, et al.New global observations of the terrestrial carbon cycle from GOSAT:Patterns of plant fluorescence with gross primary productivity[J].Geophysical Research Letters, 2011, 38(17):L17706.

    [7]

    Frankenberg C, O’dell C, Guanter L, et al.Remote sensing of near-infrared chlorophyll fluorescence from space in scattering atmospheres:Implications for its retrieval and interferences with atmospheric CO2 retrievals[J].Atmospheric Measurement Techniques, 2012, 5(8):2081-2094.

    [8]

    Li X, Xiao J, He B, et al.Solar-induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes:First global analysis based on OCO-2 and flux tower observations[J].Global Change Biology, 2018, 24(9):3990-4008.

    [9]

    李月, 孙政国.基于叶绿素荧光遥感监测的蒙古高原草地生产力时空动态分析[J].江苏农业科学, 2021, 49(13):219-226.

    Li Y, Sun Z G.Temporal and spatial dynamic analysis of grassland productivity in Mongolian Plateau based on chlorophyll fluorescence remote sensing monitoring[J].Jiangsu Agricultural Sciences, 2021, 49(13):219-226.

    [10]

    王雅楠, 韦瑾, 汤旭光, 等.应用叶绿素荧光估算植被总初级生产力研究进展[J].遥感技术与应用, 2020, 35(5):975-989.

    Wang Y N, Wei J, Tang X G, et al.Progress of using the chlorophyll fluorescence to estimate terrestrial gross primary production[J].Remote Sensing Technology and Application, 2020, 35(5):975-989.

    [11]

    Li X, Xiao J.A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data[J].Remote Sensing, 2019, 11(5):517.

    [12]

    张心竹, 王鹤松, 延昊, 等.2001-2018年中国总初级生产力时空变化的遥感研究[J].生态学报, 2021, 41(16):6351-6362.

    Zhang X Z, Wang H S, Yan H, et al.Analysis of spatio-temporal changes of gross primary productivity in China from 2001 to 2018 based on Romote Sensing[J].Acta Ecologica Sinica, 2021, 41(16):6351-6362.

    [13]

    谢鹏飞.基于日光诱导叶绿素荧光的干旱遥感监测研究[D].合肥:安徽农业大学, 2022.Xie P F.Remote sensing monitoring of drought based on solar-induced chlorophyll fluorescence[D].Hefei:Anhui Agricultural University, 2022.

    [14]

    安映荷, 张润卿, 刘文杰, 等.海南岛橡胶林区域不同SIF产品的差异性分析及其对GPP估算的影响[J].热带生物学报, 2023, 14(4):412-423.

    An Y H, Zhang R Q, Liu W J, et al.Analysis of different satellite-based SIF products of the rubber plantations in Hainan Island and their effects on GPP estimate[J].Journal of Tropical Biology, 2023, 14(4):412-423.

    [15]

    Liu J, Chen J M, Cihlar J, et al.Net primary productivity mapped for Canada at 1-km resolution[J].Global Ecology and Biogeography, 2002, 11(2):115-129.

    [16]

    周敏.基于叶绿素荧光的中国植被总初级生产力估算[D].兰州:西北师范大学, 2021.Zhou M.Estimation of gross primary production using sun-induced chlorophyll fluorescence in China[D].Lanzhou:Northwest Normal University, 2021.

    [17]

    姜海梅, 叶昊天, 王若静, 等.基于MODIS产品的生态系统呼吸模型在内蒙古半干旱草原的验证[J].北京大学学报(自然科学版), 2019, 55(6):1029-1037.

    Jiang H M, Ye H T, Wang R J, et al.A validation study of MODIS-based ecosystem respiration model in a semi-arid grassland of Inner Mongolia [J].Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(6):1029-1037.

    [18]

    Gao Y, Yu G, Yan H, et al.A MODIS-based photosynthetic capacity model to estimate gross primary production in Northern China and the Tibetan Plateau[J].Remote Sensing of Environment, 2014, 148:108-118.

    [19]

    Lloyd J, Taylor J A.On the temperature dependence of soil respiration[J].Functional Ecology, 1994, 8(3):315.

    [20]

    闫世琦, 赵正勇, 杨旗, 等.基于有限样点和大尺度模型的区域土壤呼吸模型研究[J].土壤通报, 2021, 52(4):865-872.

    Yan S Q, Zhao Z Y, Yang Q, et al.Regional soil respiration modelling based on the finite sample points and the large-scale model[J].Chinese Journal of Soil Science, 2021, 52(4):865-872.

    [21]

    马芮.基于模型-数据融合的中国区域碳水通量动态模拟及分析[D].北京:中国科学院大学(中国科学院遥感与数字地球研究所), 2018.Ma R.Dynamic simulation and analysis of carbon and water fluxes in China based on model-data fusion[D].Beijing:University of Chinese Academy of Sciences (Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences), 2018.

    [22]

    韩艳凤, 江志红, 王冀, 等.东北地区夏季降水时空变化特征[J].气象科技, 2005, 33(2):136-141.

    Han Y F, Jiang Z H, Wang J, et al.Temporal and spatial characteristics of summer rainfall in Northeast China[J].Meteorological Science and Technology , 2005, 33(2):136-141.

    [23]

    龚强, 汪宏宇, 王盘兴.东北夏季降水的气候及异常特征分析[J].气象科技, 2006, 34(4):387-393.

    Gong Q, Wang H Y, Wang P X.Analysis of climate and anomaly features of summer precipitation in Northeast China[J].Meteorological Science and Technology , 2006, 34(4):387-393.

    [24]

    张雷.近50年东北地区夏季降水变化特征[J].黑龙江农业科学, 2017(10):15-16, 20.

    Zhang L.Characteristics of summer precipitation variability in Northeast China in recent 50 years [J].Heilongjiang Agricultural Sciences, 2017(10):15-16, 20.

  • 加载中
计量
  • 文章访问数:  34
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2023-09-01
修回日期:  2023-11-30

目录