Research Progress in Flotation Separation of Quartz and Feldspar in China
-
摘要:
石英常与长石类硅酸盐矿物共生,由于两者相似的物化性质使其分离提纯难度较大。浮选法是石英与长石分离最有效的方法,详细综述了氢氟酸法、无氟有酸法和无氟无酸法等石英与长石分离的主要浮选方法,指出无氟无酸法和预处理强化浮选是未来技术发展的重点方向。在药剂研究方面,目前主要集中在阴阳离子组合捕收剂、抑制剂、金属离子活化等的设计与开发,但机理研究较少。
Abstract:Quartz is often symbiotic with feldspar silicate minerals, which is difficult to separate and purify because of their similar physical and chemical properties. Flotation is the most effective method for the separation of quartz and feldspar. The main flotation methods for the separation of quartz and feldspar, such as hydrofluoric acid method, fluoride-free acid method and fluoride-free acid method, are reviewed in detail. It is pointed out that fluoride-free acid method and pretreatment enhanced flotation will be the key direction of technological development in the future. In pharmaceutical research, the current focus is on the design and development of combined cationic and anion collectors, inhibitors, metal ion activation and so on, but the mechanism research is less.
-
Key words:
- feldspar /
- quartz /
- flotation separation /
- reagent /
- research progress
-
-
种类 含量要求 粒度要求/目 SiO2/% 杂质含量/(μg·g-1) 超纯石英 > 99.999 0.1~1 超高纯石英 > 99.999 1~8 高纯石英 > 99.995 8~50 40~70 中高等纯度石英砂 > 99.97 50~300 70~140 中等纯度石英砂 > 99.5 300~5 000 低等纯度石英砂 > 99 5 000~10 000 表 2 尤尼明公司高纯石英砂质量标准[2]
Table 2. Unimin high purity quartz sand quality standard
元素 杂质含量/10-6 IOTA-STD IOTA-4 IOTA-6 IOTA-8 Al 14 8 8 8 B < 0.10 < 0.05 < 0.05 < 0.05 Ca 0.6 0.7 0.7 0.4 Cr 0.006 0.007 0.003 0.001 Cu 0.028 0.004 0.001 < 0.001 Fe 0.3 0.3 0.2 < 0.05 K 0.7 0.4 0.1 < 0.05 Li 0.5 0.2 0.2 < 0.05 Mg 0.04 0.07 0.07 0.01 Mn 0.039 0.013 0.008 0.001 Na 1 1 < 0.1 < 0.05 Ni 0.001 0.002 0.002 < 0.001 P 0.1 0.1 0.1 < 0.05 Ti 1.2 1.4 1.3 1.3 Zn 0.01 0.01 0.01 0.01 表 3 石英中主要杂质元素的赋存状态和存在形式[4, 18-19]
Table 3. Occurrence state and form of main impurity elements in quartz
元素 赋存状态 存在形式 Al 独立矿物、类质同象 石英晶格杂质缺陷(Al3+替代晶格Si4+)、云母、长石、黏土类矿物 Fe 类质同象、独立矿物、包裹体 赤铁矿、黄铁矿等,石英晶格杂志缺陷(Fe3+替代晶格Si4+), (亚)微米包裹体、固态矿物包裹体 Ca 独立矿物、包裹体 方解石、萤石等矿物、气液包裹体液相 Mg 独立矿物、包裹体 白云石、云母等、包裹体 K 独立矿物、类质同象、包裹体 石英晶格杂质缺陷、钾长石、云母、黏土矿物、气液包裹体液相、电荷补偿杂质 Ge 类质同象 石英晶格杂质缺陷 Li 类质同象、包裹体 石英晶格杂质缺陷、气液包裹体液相 Na 类质同象、独立矿物、包裹体 钠长石、云母等、石英晶格杂质缺陷、气液包裹体液相 Ti 类质同象、独立矿物 石英晶格杂质缺陷、金红石 B 类质同象 石英晶格杂质缺陷 H 类质同象、包裹体 石英晶格杂质缺陷、包裹体中的水、有机质 -
[1] 彭寿, 陈志强. 我国硅质原料产业现状及发展趋势[J]. 国外建材科技, 2008(2): 40-46. doi: 10.3963/j.issn.1674-6066.2008.02.012
[2] 丁亚卓. 低品位石英矿提纯制备高纯度石英的研究[D]. 沈阳: 东北大学, 2010: 164.
[3] 王云月, 邓宇峰, 詹建华, 等. 高纯石英原料特征和矿床成因研究现状综述[J]. 地质论评, 2021, 67(5): 1465-1477. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202105021.htm
[4] 王九一. 全球高纯石英原料矿的资源分布与开发现状[J]. 岩石矿物学杂志, 2021, 40(1): 131-141. doi: 10.3969/j.issn.1000-6524.2021.01.012
[5] 玻璃工业的发展及其对硅质原料的需求[J]. 中国建材, 2006(1): 40-41.
[6] 胡廷海. 北海高岭土伴生石英砂矿选矿试验研究[D]. 武汉: 武汉理工大学, 2013.
[7] VATALIS K I, CHARALAMBIDES G, BENETIS N P. Market of high purity quartz innovative applications[J]. Procedia Economics and Finance, 2015, 24: 734-742. doi: 10.1016/S2212-5671(15)00688-7
[8] MüLLER A, KOCH-MüLLER M. Hydrogen Speciation and Trace Element Contents of Igneous, Hydrothermal and Metamorphic Quartz from Norway[J]. Mineralogical Magazine, 2009, 73(4): 569-583. doi: 10.1180/minmag.2009.073.4.569
[9] 韩宪景. 超高纯石英砂深加工生产[J]. 国外金属矿选矿, 1998(7): 31-32. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK199807010.htm
[10] 钟乐乐. 超高纯石英纯化制备及机理研究[D]. 武汉: 武汉理工大学, 2015: 267.
[11] 张洪武. 石英矿中Al/Fe/气液包裹体强化去除制备高纯石英砂试验研究[D]. 昆明: 昆明理工大学, 2021.
[12] 郝文俊, 冯书文, 詹建华, 等. 全球高纯石英资源现状、生产、消费及贸易格局[J]. 中国非金属矿工业导刊, 2020(5): 15-19. doi: 10.3969/j.issn.1007-9386.2020.05.005
[13] 张继勇. 强硬翅膀方能远走高飞[N]. 中国矿业报, 2021: 07-09.
[14] 陈军元, 刘艳飞, 颜玲亚, 等. 石墨、萤石等战略非金属矿产发展趋势研究[J]. 地球学报, 2021, 42(2): 287-296. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202102022.htm
[15] 颜玲亚, 刘艳飞, 于海军, 等. 中国高纯石英资源开发利用现状及供需形势[J]. 国土资源情报, 2020(10): 98-103. doi: 10.3969/j.issn.1674-3709.2020.10.017
[16] GÖTZE J. Chemistry, Textures and Physical Properties of Quartz — Geological Interpretation and Technical Application[J]. Mineralogical Magazine, 2009, 73(4): 645-671. doi: 10.1180/minmag.2009.073.4.645
[17] 杨晓勇, 孙超, 曹荆亚, 等. 高纯石英的研究进展及发展趋势[J]. 地学前缘: 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202201016.htm
[18] 郭文达, 韩跃新, 朱一民, 等. 高纯石英砂资源及加工技术分析[J]. 金属矿山, 2019(2): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201902006.htm
[19] 马超, 冯安生, 刘长淼, 等. 高纯石英原料矿物学特征与加工技术进展[J]. 矿产保护与利用, 2019, 39(6): 48-57. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=f8d0ad56-4a9b-498c-9bfc-4bfca34bcc24
[20] HUANG H, LI J, LI X, ET AL. Iron removal from extremely fine quartz and its kinetics[J]. Separation and Purification Technology, 2013, 108: 45-50. doi: 10.1016/j.seppur.2013.01.046
[21] MOWLA D, KARIMI G, OSTADNEZHAD K. Removal of hematite from silica sand ore by reverse flotation technique[J]. Separation and Purification Technology, 2008, 58(3): 419-423. doi: 10.1016/j.seppur.2007.08.023
[22] ZHANG Z, LI J, LI X, ET AL. High efficiency iron removal from quartz sand using phosphoric acid[J]. International Journal of Mineral Processing, 2012, 114/5/116/117: 30-34. http://www.sciencedirect.com/science/article/pii/S030175161200110X
[23] ZHANG Y, HU Y, SUN N, ET AL. Systematic review of feldspar beneficiation and its comprehensive application[J]. Minerals Engineering, 2018, 128: 141-152. doi: 10.1016/j.mineng.2018.08.043
[24] 田金星. 高纯石英砂的提纯工艺研究[J]. 中国矿业, 1999(3): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA199903018.htm
[25] 贾木欣, 孙传尧. 几种硅酸盐矿物零电点、可浮性及键价分析[J]. 有色金属(选矿部分), 2001(6): 1-9. doi: 10.3969/j.issn.1671-9492.2001.06.001
[26] LARSEN E, KLEIV R A. Flotation of quartz from quartz-feldspar mixtures by the HF method[J]. Minerals Engineering, 2016, 98: 49-51. doi: 10.1016/j.mineng.2016.07.021
[27] BUCKENHAM M, ROGERS J. Flotation of quartz and feldspar by dodecylamine[J]. Transactions of Institute of Mining and Metallurgy, 1954(64): 1-30.
[28] SMITH R, SMOLIK T. Infrared and X-ray diffraction study of the activation of beryl and feldspars by fluorides in cationic collector systems[J]. Trans. Soc. Min. Eng, 1965(232): 196-204. http://library.aimehq.org/search/docs/Volume%20232/232-34.pdf
[29] PERRY D L, TSAO L, GAUGLER K A. Surface study of HF and HF-H2SO4-treated feldspar using auger electron spectroscopy[J]. Geochim Cosmochim Ac, 1983(47): 1289-1291.
[30] 戴强, 唐甲莹, 程正柄. 石英-长石浮选分离的进展[J]. 非金属矿, 1996(2): 16-18. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK602.001.htm
[31] 印万忠, 孙传尧. 硅酸盐矿物浮选原理研究现状[J]. 矿产保护与利用, 2001(3): 17-22. doi: 10.3969/j.issn.1001-0076.2001.03.005 http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=5ef86268-47f6-450c-8a3e-70b80fe37b1a
[32] WANG L, SUN W, HU Y, ET AL. Adsorption mechanism of mixed anionic/cationic collectors in muscovite—quartz flotation system[J]. Minerals Engineering, 2014, 64: 44-50. doi: 10.1016/j.mineng.2014.03.021
[33] VIEIRA A M, PERES A E C. The effect of amine type, pH, and size range in the flotation of quartz[J]. Minerals Engineering, 2007, 20(10): 1008-1013. doi: 10.1016/j.mineng.2007.03.013
[34] WANG L, LIU R, HU Y, ET AL. Adsorption behavior of mixed cationic/anionic surfactants and their depression mechanism on the flotation of quartz[J]. Powder Technology, 2016, 302: 15-20. doi: 10.1016/j.powtec.2016.08.043
[35] 黄杰. 煅烧对石英浮选提纯的影响研究[D]. 沈阳: 东北大学, 2014.
[36] 杨伟刚. 云南广南县粉石英提纯研究[D]. 北京: 中国地质大学(北京), 2010.
[37] 牛福生, 倪文. 高纯石英砂选矿提纯试验研究[J]. 中国矿业, 2004(6): 59-61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA200406016.htm
[38] 刘思, 高惠民, 胡廷海, 等. 北海某高岭土尾矿中石英砂的选矿提纯试验[J]. 金属矿山, 2013(6): 161-164. doi: 10.3969/j.issn.1001-1250.2013.06.044
[39] 钟森林, 谢宝华, 袁祥奕, 等. 东南亚某石英砂矿选矿试验研究[J]. 中国矿业, 2019, 28(S1): 259-262. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2019S1069.htm
[40] GURPINAR G, SONMEZ E, BOZKURT V. Effect of ultrasonic treatment on flotation of calcite, barite and quartz[J]. Mineral Processing and Extractive Metallurgy, 2004, 113: 91-95. doi: 10.1179/037195504225005796
[41] GUO W, ZHU Y, HAN Y, ET AL. Flotation performance and adsorption mechanism of a new collector 2-(carbamoylamino) lauric acid on quartz surface[J]. Minerals Engineering, 2020, 153: 106343. doi: 10.1016/j.mineng.2020.106343
[42] LI S, GAO L, WANG J, ET AL. Polyethylene oxide assisted separation of molybdenite from quartz by flotation[J]. Minerals Engineering, 2021, 162: 106765. doi: 10.1016/j.mineng.2020.106765
[43] MOWLA D, KARIMI G, OSTADNEZHAD K. Removal of hematite from silica sand ore by reverse flotation technique[J]. Separation and Purification Technology, 2008, 58(3): 419-423. doi: 10.1016/j.seppur.2007.08.023
[44] 于福顺, 邵怀志, 蒋曼, 等. 长石石英浮选分离试验及混合捕收剂作用机理研究[J]. 矿业研究与开发, 2020, 40(12): 122-127. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202012024.htm
[45] 闫勇, 赵长峰, 黎德玲, 等. 石英与钠长石浮选分离的研究[J]. 矿物学报, 2009, 29(2): 196-200. doi: 10.3321/j.issn:1000-4734.2009.02.010
[46] 汪敏, 钱明川, 史小敏, 等. 石英与长石在酸性介质中的浮选分离研究[J]. 安徽工业大学学报(自然科学版), 2015, 32(2): 123-126. doi: 10.3969/j.issn.1671-7872.2015.02.006
[47] 吴福初, 刘子帅. 从广西某钨锡尾矿中回收长石与石英[J]. 矿业研究与开发, 2016, 36(7): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201607005.htm
[48] 张杰, 王维清, 董发勤, 等. 锂辉石浮选尾矿中长石和石英浮选分离[J]. 非金属矿, 2013, 36(3): 26-28. doi: 10.3969/j.issn.1000-8098.2013.03.011
[49] 雷绍民, 裴振宇, 钟乐乐, 等. 脉石英砂无氟反浮选热压浸出技术与机理研究[J]. 非金属矿, 2014, 37(2): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201402014.htm
[50] 韩增辉, 周琼波, 吴云英, 等. 季铵捕收剂对石英的浮选性能研究[J]. 化工矿物与加工, 2020, 49(11): 9-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKJ202011003.htm
[51] 魏梦楠. 石英及长石-石英系统的浮选行为和捕收剂吸附机理[D]. 合肥: 中国科学技术大学, 2019.
[52] 郑翠红, 汪敏, 钱明川, 等. 石英与长石在中性介质中的浮选分离研究[J]. 非金属矿, 2015, 38(4): 49-51. doi: 10.3969/j.issn.1000-8098.2015.04.016
[53] VIDYADHAR A, HANUMANTHA RAO K. Adsorption mechanism of mixed cationic/anionic collectors in feldspar-quartz flotation system[J]. Journal of Colloid and Interface Science, 2007, 306(2): 195-204. doi: 10.1016/j.jcis.2006.10.047
[54] VIDYADHAR A, HANUMANTHA RAO K, FORSSBERG K S E. Separation of feldspar from quartz: mechanism of mixed cationic/anionic collector adsorption on minerals and flotation selectivity[J]. Mining, Metallurgy & Exploration, 2002, 19(3): 128-136.
[55] É奥K. H., 孙宝歧. 阴/阳离子混合捕收剂的溶液化学及长石与石英的浮选分离[J]. 国外金属矿选矿, 1994(10): 36-45. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK199410004.htm
[56] J S, K N, T K. Separation of feldspar from quartz by a new flotation process[J]. World Mining and Metals Technology, 1976: 428-438.
[57] 王杨, 陈留慧. 某金矿尾矿提纯石英应用对比试验研究[J]. 矿产综合利用, 2021(2): 159-162. doi: 10.3969/j.issn.1000-6532.2021.02.027
[58] 董宏. 尾矿中长石—石英的提取及选矿废水的回用[D]. 长沙: 湖南农业大学, 2016.
[59] 周亢. 提高石英浮选提纯效果的研究[D]. 广州: 华南理工大学, 2013: 75.
[60] 刘宝贵. 高纯石英的提取工艺及其浮选药剂的研究[D]. 武汉: 武汉工程大学, 2017: 105.
[61] SHEHU N, SPAZIANI E. Separation of feldspar from quartz using EDTA as modifier[J]. 1999(12): 1393-1397.
[62] 于福家, 黄杰, 陈晓龙, 等. 某石英矿阴阳离子混合捕收剂浮选提纯研究[J]. 非金属矿, 2015, 38(5): 57-59. doi: 10.3969/j.issn.1000-8098.2015.05.018
[63] 刘亚川, 龚焕高, 张克仁. 六偏磷酸钠的作用机理研究[J]. 东北工学院学报, 1993(3): 231-235. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX199303004.htm
[64] 陈琳璋. 石英与长石的浮选分离研究[D]. 长沙: 湖南工业大学, 2014.
[65] 黎小玲. 碱土阳离子在石英与长石浮选分离中的作用[J]. 国外选矿快报, 1994(14): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB199414003.htm
[66] 银锐明, 陈琳璋, 侯清麟, 等. 金属镁离子活化石英浮选的机理研究[J]. 功能材料, 2013, 44(15): 2193-2196. doi: 10.3969/j.issn.1001-9731.2013.15.014
[67] REN L, QIU H, ZHANG Y, ET AL. Effects of alkyl ether amine and calcium ions on fine quartz flotation and its guidance for upgrading vanadium from stone coal[J]. Powder Technology, 2018, 338: 180-189. doi: 10.1016/j.powtec.2018.07.026
[68] 石云良, 邱冠周, 胡岳华, 等. 石英浮选中的表面化学反应[J]. 矿冶工程, 2001(3): 43-45. doi: 10.3969/j.issn.0253-6099.2001.03.013
-