Heavy Metal Pollution and Ecological Risk Assessment in Haoping Stone Coal Mine Area of Shaanxi Province
-
摘要:
石煤矿区开采会引起矿区及周边土壤、水体重金属污染。对陕西蒿坪石煤矿石煤及周边土壤重金属Cd、Cr、Cu、Zn、Pb进行了测定,并对石煤进行了浸出毒性试验,运用地累积指数和潜在生态危害指数评价了矿区土壤重金属污染程度及潜在生态风险。结果表明,石煤中Cr、Cd、Zn含量高于中国煤和世界煤,而Pb和Cu含量与中国煤和世界煤接近。5种重金属元素浸出毒性虽然低于《危险废物鉴别标准浸出毒性鉴别》的浓度限值,但均超过了《地下水质量标准》Ⅲ类标准。安康蒿坪石煤矿区土壤Cd、Cu、Zn、Pb含量均超过陕西土壤背景值,矿区土壤重金属处于轻度污染水平,综合生态危害轻微。矿区土壤中Cd含量超过了《土壤环境质量农用地土壤污染风险管控标准(试行)》中规定的风险筛选值,潜在生态风险较大,应防控该矿区土壤中Cd污染。
Abstract:Mining of stone coal will cause heavy metal pollution in mining area andsurrounding soil and water body. The heavy metal Cd, Cr, Cu, Zn, Pb of stone coal and surrounding soil in Haoping Stone Coal Mine of Shannxi Province was determined, and the leaching toxicity experiment of stone coal was carried out. Land accumulation index and potential ecological hazard index were used to evaluate the pollution degree and potential ecological risk of soil heavy metals in mining area.The results show that the content of Cr, Cd, Zn in stone coal is higher than that in Chinese coal and world coal. The contents of Pb and Cu are close to those of Chinese coal and coal in the world. Although the leaching toxicity of five heavy metal elements is lower than limit value of Hazardous Waste Indentification Standard Leaching Toxicity Identification, both of them exceed the class Ⅲ of Groundwater Quality Standard.The content of soil Cd, Cu, Zn, Pb in Haoping stone coal mine area in Ankang exceeded the background value of Shannxi soil. The soil heavy metals in mining area were at the level of light pollution and the comprehensive ecological damage was slight. The content of Cd in the soil of mining area exceeds the risk screening value specified in Land Envrionmental Quality and Control Standards for Soil Pollution Risk of Agricultural Land(Trial), and the potential ecological risk is large. Therefore, the Cd pollution in the soil of the mining area should be prevented and controlled.
-
Key words:
- stone coal /
- heavy metal element /
- leaching toxicity /
- potential ecological risk
-
-
表 1 石煤的工业分析
Table 1. Industrial analysis of stone coal
Mad/% Ad/% Vdaf /% FCd /% St, d/% Ss, d /% Sp, d /% So, d /% Qgr, ad MJ/kg 2.40 39.16 4.87 53.57 1.82 0.03 1.76 0.03 5.53 ad:风干基;d:干燥; daf:干灰;M:水分;A:灰分产量;V:挥发性物质;FC:固定碳; St, d:总硫;Sp, d:黄铁矿硫;Ss, d:硫酸盐硫;So, d:有机硫;Qgr, ad:空气干燥基的热值。 表 2 石煤中重金属元素含量及与其它煤的比较
Table 2. Content of heavy metals in stone and its comparison with other coals
/(mg·kg-1) 表 3 石煤重金属元素的浸出毒性
Table 3. Leaching toxicity of heavy metal elements in stone coal
/(mg·L-1) 元素 浸出毒性 《地下水质量标准》Ⅲ类标准 《污水综合排放标准》二级标准 《危险废物鉴别标准浸出毒性鉴别》 Cd 0.03 0.005 0.10 1.00 Cr 0.06 0.05 1.50 15.00 Cu 0.21 1.00 1.00 100.00 Zn 9.50 1.00 5.00 100.00 Pb 0.50 0.01 1.00 5.00 表 4 石煤矿区土壤重金属污染与生态风险评价
Table 4. Heavy metal pollution and ecological risk assessment of soil in stone coal mine area
指标 平均值/(mg·kg-1) 陕西土壤背景值/(mg·kg-1) 《农用地土壤污染风险管控标准(试行)》(pH>7.5)/(mg·kg-1) 污染评价 生态风险评价 风险筛选值 风险管制值 Igeo Cri Eri RI Cd 0.75 0.24 0.6 4.0 0.32 3.13 93.75 122 Cr 38.15 62.5 250 1 300 -0.40 0.61 1.22 Cu 57.88 21.4 100 - 0.26 2.70 13.52 Zn 167.03 69.4 300 - 0.21 2.41 2.41 Pb 47.98 21.4 170 1 000 0.18 2.24 11.21 pH 8.63 - - - - - - 《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB 15618—2018)。 -
[1] 甘国娟, 刘伟, 邱亚群, 等. 湘中某冶炼区农田土壤重金属污染及生态风险评价[J]. 环境化学, 2013, 32(1): 132-138. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201301021.htm
[2] 谢小进, 康建成, 李卫江, 等. 上海宝山区农用土壤重金属分布与来源分析[J]. 环境科学, 2010, 30(3): 768-774. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201003042.htm
[3] 杜蕾, 朱晓丽, 安毅夫, 等. 石煤尾矿区土壤重金属污染风险评价[J]. 化学工程, 2018, 46(3): 6-9+15. doi: 10.3969/j.issn.1005-9954.2018.03.002
[4] BAKIS R, TUNCAN A. An investigation of heavy metal and migration through groundwater from the landfill area of Eskisehir in Turkey[J]. Environmental Monitoring and Assessment, 2011, 176(1-4): 87-98. doi: 10.1007/s10661-010-1568-3
[5] 马骅, 任明强, 赵宾. 煤矸石毒性浸出及周边土壤环境影响分析[J]. 能源环境保护, 2017, 31(3): 55-57+25. doi: 10.3969/j.issn.1006-8759.2017.03.016
[6] 张海凤, 王玉珏, 王劲璘等. 铸造废砂的环境毒性研究[J]. 环境科学, 2013, 34(3): 1174-1180 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201303054.htm
[7] 何绪文, 石靖靖, 李静等. 镍渣的重金属浸出特性[J]. 环境工程学报, 2014, 8(8): 3385-3389 https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201408049.htm
[8] 孙亚乔, 段磊, 王晓娟等. 煤矸石酸性水释放对土壤重金属化学行为的影响[J]. 水土保持学报, 2016, 30(1): 300-314 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201601053.htm
[9] 王国兴. 安康将成为陕西的"攀枝花"-陕南石煤资源综合利用开发调查[J]. 现代企业, 2012(8): 26-27. doi: 10.3969/j.issn.1000-9671.2012.08.015
[10] 王峰, 陈娅鑫, 贾志刚. 安康市南部石煤成矿地质条件分析[J]. 煤炭加工与综合利用, 2019(1): 65-68. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJG201901019.htm
[11] 王国星. 陕南利用资源循环发展[J]. 西部大开发, 2012(9): 90-91. https://www.cnki.com.cn/Article/CJFDTOTAL-XBKF201209035.htm
[12] 杜蕾, 朱晓丽, 安毅夫, 等. 石煤尾矿区土壤重金属污染风险评价[J]. 化学工程, 2018, 46(3): 6-9+15. doi: 10.3969/j.issn.1005-9954.2018.03.002
[13] 林海, 田野, 董颖博, 等. 钒冶炼厂周边陆生植物对重金属的富集特征[J]. 工程科学, 2016, 38(10): 1410-1416. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201610009.htm
[14] 杨净, 王宁. 夹皮沟金矿开采区土壤重金属污染潜在生态风险评价[J]. 农业环境科学学报, 2013, 32(3): 595-600. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201303031.htm
[15] 贾志刚. 安康市蒿坪石煤矿带地质特征[J]. 价值工程, 2014, 33(30): 310-311. https://www.cnki.com.cn/Article/CJFDTOTAL-JZGC201430175.htm
[16] 王馨. 云南省东部煤中铀的环境地球化学特征研究[D]. 中国矿业大学, 2016.
[17] 刘春华, 曾经, 夏畅斌, 等. 城市污水厂污泥改性物对Hg(Ⅱ)吸附的研究[J]. 材料保护, 2007, 40(5): 58-60. 环境科学, 2015, 36(3): 1037-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-CLBH200705022.htm
[18] 方晓波, 史坚, 廖欣峰, 等. 川白安市雷竹林土壤重金属污染特征及生态风险评价[J]. 应用生态学报, 2015, 26(6): 1883-1891. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201506039.htm
[19] WU Y, XU Y, HU S H, et al. Ecological risk assessment of envy metals in contaminated soil base on engineering fuzzy set theory[J]. Advanced Materials Research, 2010, 956(113): 815-818. http://www.scientific.net/AMR.113-116.815
[20] 王莎, 马俊杰, 赵丹, 等. 陕北地区土壤重金属污染特征及生态风险评价[J]. 农业资源与环境学报, 2013, 30(5): 44-47. doi: 10.3969/j.issn.1005-4944.2013.05.010
[21] PAN L B, MA J, HU Y, et al. Assessments of levels, potential ecological risk, and human health risk of heavy metals in the soils from a typical county in Shanxi Province, China[J]. Environmental Science and Pollution Research International, 2016, 23(19): 19330-19340. doi: 10.1007/s11356-016-7044-z
[22] 徐争启, 倪师军, 度先国, 等. 潜在生态危害指数法评价重金属毒性系数计算[J]. 环境科学与技术. 2008, 31(2): 112-115. doi: 10.3969/j.issn.1003-6504.2008.02.030
[23] Zhai Y B, Wei X X, Zeng G M, et al. Effects of metallic derivatives in adsorbent derived from sewage sludge on adsorption of sulfur dioxide[J]. Journal of Central South University of Technlogy, 2014, 11(1): 55-58.
[24] 王馨. 三种不同煤及其燃烧产物中微量元素的环境地球化学特征[D]. 安徽理工大学, 2005.
[25] 李莹, 叶际达, 张亮, 等. 石煤开发利用重金属污染现状调查研究[J]. 能源环境保护, 2005(2): 58-61. doi: 10.3969/j.issn.1006-8759.2005.02.018
[26] 武旭仁. 鲁西南煤矿区重金属元素环境地球化学特征研究[D]. 武汉: 武汉理工大学, 2012.
[27] 王帅杰, 狄楠楠, 王杰林. 煤中微量元素的环境效应[J]. 环境科学与技术, 2010, 33(10): 179-182. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201010043.htm
[28] 白向飞, 李文华, 陈亚飞, 等. 中国煤中微量元素分布基本特征[J]. 煤质技术, 2007(1): 1-4. doi: 10.3969/j.issn.1007-7677.2007.01.001
[29] 唐修义, 黄文辉. 中国煤中微量元素[M]. 北京: 商务印书馆, 2004.
[30] 任德贻, 赵峰华, 代世峰, 等. 煤的微量元素地球化学[M]. 北京: 科学出版社, 2006.
[31] DAl SF, ZHOU YP, REN DY, et al. Geochemistry and mineralogy of the Late Permian coals from the Songzao Coalfield, Chongqing, southern China[J]. Science in China (Series D: Earth Science). doi: 10.1007/s11430-007-0001-4
[32] 马骅, 任明强, 赵宾. 煤矸石毒性浸出及周边土壤环境影响分析[J]. 能源环境保护, 2017, 31(3): 55-57, 25. doi: 10.3969/j.issn.1006-8759.2017.03.016
[33] 孙蓓蕾, 曾凡桂, 李美芬, 等. 西山煤田马兰矿区8号煤及其夹矸的微量与稀土元素地球化学特征[J]. 煤炭学报, 2010, 35(1): 110-116. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201001031.htm
[34] LUOK L, WANG WY, YAO GH, et al. Mercury content and it's distribution in Penno2 carboniferous coal in Weibei area, Shanxi[J]. Coal Geology & Exploration, 2000, 28(3): 12-14. http://www.zhangqiaokeyan.com/academic-journal-cn_coal-geology-exploration_thesis/0201215828529.html
[35] 田志强, 韩翠莲, 霍轶珍. 乌拉特灌域北部农田土壤重金属污染特征及生态风险分析[J]. 北方农业学报, 2019, 47(6): 79-83. https://www.cnki.com.cn/Article/CJFDTOTAL-NMGN201906015.htm
[36] HAKANSON L. An econology risk index for aquatic; pollution control a sediment technical approach[J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8
-