Spatial Distribution Information Extraction of Soil Total Phosphorus in Huan River Basin Based on Regression Kriging Method and Sentinel 2B Remote Sensing Data
-
摘要: 土壤总磷空间分布是准确掌握流域农业面源污染状况的关键,而遥感技术因其便利性在土壤面源污染调查中的潜力亟待探索。本文以澴河流域土壤总磷分布为例,分析了土壤总磷的光谱特性,发现总磷含量与土壤光谱反射率呈负相关,其中红外光谱(700~1800nm)表现更加明显;并以土壤总磷光谱计算数据作为环境辅助因子,取样点数据作为主要因素,运用回归克里格地统计方法成功提取了澴河流域土壤总磷空间分布信息,将结果与实测数据对比,其ME值为0.08,MAE值为0.48,RMSE值为0.69,预测精度较协同克里格和反距离权重法有明显提高。本方法既保留了地统计分析方法的精度,又具备处理高密度样本的能力,为土壤属性的空间插值提供了一种可行的获取方法。Abstract: Understanding the spatial distribution of soil total phosphorus in the Huan River basin is the key toaccurately grasp the agricultural non-point source pollution in the basin, while remote sensing is expected towork in the pollution as its efficiency.In this paper, the spectral characteristics of soil total phosphorus wereanalyzed to find out that the total phosphorus content was negatively correlated with soil reflectance spectrum, in which the infrared spectrum (700-1800nm) was more obvious.Taking the spectral calculation data of soil total phosphorus as the environmental auxiliary factor and the data of sampling points as the main elements, the regression Kriging statistical method was used to successfully extract the spatial distribution information of soil total phosphorus in the river basin. Compared the results with the measured data, the ME value is 0.08, MAE value is 0.48 and RMSE value is 0.69.The prediction accuracy of this method is significantly higher than that of the co-Kriging and inverse distance weighting method. This method not only matches the accuracy of the statistical analysis, but also be appropriate to deal with high-density samples, which is a feasible method for getting spatial interpolation of soil properties.
-
Key words:
- total soil phosphorus /
- spatial distribution /
- regression Kriging /
- Huan River Basin
-
-
[1] 鲍波,雷天赐,姜华,徐宏林,王磊,郝志红.2022.广西宁明县海渊镇土地质量地球化学评价[J]. 华南地质,38(4):669-679.
[2] 陈鹏飞,刘良云,王纪华,沈涛,陆安祥,赵春江.2008.近红外光谱技术实时测定土壤中总氮及磷含量的初步研究[J].光谱学与光谱分析,28(2):295-298.
[3] 陈思明,王宁,秦艳芳,张红月.2020.基于特征变量与支持向量机回归克里格(SVRK)法的湿地土壤有机质空间变异特征分析[J].土壤,52(6):1298-1305.
[4] 代富强,周启刚,刘刚才.2014.基于回归克里格和遥感的紫色土区土壤有机质含量空间预测[J]. 土壤通报,45(3):562-567.
[5] 段碧辉,孙奥,王芳,夏伟,李春诚,邹辉,项剑桥,杨军.2022.荆门市耕地不同土壤类型养分含量特征及肥力评价[J].资源环境与工程,36(6):802-807.
[6] 高中原,肖荣波,王鹏,邓一荣,戴伟杰,刘楚藩.2021.融合自然-人为因子改进回归克里格对土壤镉空间分布预测[J].环境科学,42(1):343-352.
[7] 国家质量监督检验检疫总局,国家标准化管理委员会.2016.
[8] 中华人民共和国国家标准: 耕地质量等级(GB/T33469-2016)[S].北京:中国标准出版社.
[9] 何文熹,王磊,杨玉龙.2019.基于Landsat 8 影像赤壁-嘉鱼地区岩性划分效果分析[J].华南地质,35(2):261-269.
[10] 贾玉华,邵明安.2014.黄土区撂荒地土壤全磷的小尺度空间变异研究[J].土壤通报,45(1):116-122.
[11] 姜华,雷天赐,鲍波,徐宏林,李梦茹.2020.广西贵港市大安镇土地质量地球化学评价[J].华南地质,(3):254-262.
[12] 冷智超,杜尧,陶艳秋,黄艳雯,邓娅敏.2022.长江中游沿岸地下水中铵氮与磷的共存规律及其控制因素[J].地质科技通报,41(1):300-308.
[13] 李启权,王昌全,岳天祥,张文江,余勇.2012.基于神经网络模型的中国表层土壤有机质空间分布模拟方法[J].地球科学进展,27(2):175-184.
[14] 刘太胜,姜沄林,陆尧,邓瀚镪,赵蒙蒙.2021.珠江口海域沉积物中总氮总磷的空间分布特征[J].广东化工,48(16):148-149.
[15] 鲁程鹏,束龙仓,张颖,王勇.2009.稀疏数据插值问题的回归克里格方法[J].水电能源科学,27(1):81-84.
[16] 王磊,顾晓鹤,王宝山,王延仓,陈艳玲,高林.2015.基于HJ-1A超光谱影像的县域尺度耕地土壤速效磷含量遥感制图研究[J].土壤通报,46(6):1314-1320.
[17] 王磊,章昱,徐帅,伏永朋.2019.丹江口水库总磷浓度遥感反演及其时空特征研究[J].华南地质,35(4):449-456.
[18] 王燕,瞿明凯,陈剑,杨兰芳,黄标,赵永存.2019.基于GWRK的土壤有效磷空间预测及其超标风险评估[J].中国环境科学,39(1):249-256.
[19] 王雪珊,沈庆松,高凤杰,张兴义,张少良,王力.2012.黑土区小流域土壤速效磷空间分布模拟方法[J].水土保持研究,28(2):33-40.
[20] 夏子书,白一茹,包维斌,钟艳霞,王幼奇.2020.基于多光谱和地理加权回归模型的石嘴山城市土壤有机碳空间分布研究[J].干旱区地理,43(05):1348-1357.
[21] 肖凯琦,董好刚,郭军,李毅,陈彪.2021.湖南省汨罗市耕地土壤养分空间变异特征研究[J]. 华南地质,37(4):369-376.
[22] 叶舟.2021.人为扰动情形下城郊溪流沉积物磷形态及污染特征分析[J].绍兴文理学院学报(自然科学), 41(2):57-62.
[23] 余红兵,戴桂金.2018.氮磷面源污染在沟渠中的迁移转化机理[J].南方农业,12(31):103-105.
[24] 张海威,张飞,李哲,阿依努尔·玉山江,陈芸.2017.艾比湖流域地表水水体悬浮物、总氮与总磷光谱诊断及空间分布特征[J].生态环境学报,26(6):1042-1050.
[25] 周蓓蓓,郭江,陈晓鹏,杨强,朱红艳,段曼莉,李晓晴,周德华,杨扬.2021.基于UNMIX 模型的安徽大矾山废弃矿区土壤重金属源解析[J]. 农业工程学报,37(24):240-248.
[26] 朱鑫,汪实,李婷婷.2021.雷州半岛土壤地球化学背景值研究[J].华南地质,37(1):103-112.
[27] 邹辉,王卉,项剑桥,杨军,段碧辉,王天一,徐春燕,赵敏,潘飞.2020.不同采样密度与空间插值方法对江汉平原典型区土壤质量地球化学评价结果的影响[J].资源环境与工程,34(S1):21-27.
[28] Chien S H, Sikora F J, Gilkes R J, McLaughlinM J. 2012. Comparing of the difference and balance methods to calculate percent recovery of fertilizer phosphorus applied to soils: a critical discussion [J]. Nutrient Cycling in Agroecosystems, 92(1):1-8.
[29] Hengl T, Heuvelink G B M, Rossiter D G.2007. About regression-kriging: From equations to case studies[J]. Computers & Geosciences, 33(10): 1301-1315.
[30] Kumar S, Lal R, Liu D S.2012. A geographically weighted regression kriging approach for mapping soil organic carbon stock [J]. Geoderma,189-190(6):627-634.
[31] Lin C, Ma R H, Xiong J F.2018. Can the watershed non-point phosphorus pollution be interpreted by critical soil properties? A new insight of different soil P states [J]. Science of the Total Environment, 628-629: 870-881.
[32] Zhang S W, Huang Y F,Shen C Y, Ye H C, Du Y C.2012. Spatial prediction of soil organic matter using terrain indices and categorical variables as auxiliary information[J]. Geoderma,171-172:35-43.
[33] Zhu Q, Lin H S.2010. Comparing Ordinary Kriging and Regression Kriging for Soil Properties in Contrasting Landscapes[J]. Pedosphere, 20(5):594-606.
-
计量
- 文章访问数: 567
- PDF下载数: 187
- 施引文献: 0