矿石提锂技术现状与研究进展

张秀峰, 谭秀民, 刘维燥, 王威, 张利珍. 矿石提锂技术现状与研究进展[J]. 矿产保护与利用, 2020, 40(5): 17-23. doi: 10.13779/j.cnki.issn1001-0076.2020.05.003
引用本文: 张秀峰, 谭秀民, 刘维燥, 王威, 张利珍. 矿石提锂技术现状与研究进展[J]. 矿产保护与利用, 2020, 40(5): 17-23. doi: 10.13779/j.cnki.issn1001-0076.2020.05.003
ZHANG Xiufeng, TAN Xiumin, LIU Weizao, WANG Wei, ZHANG Lizhen. Current Status and Research Progress of Lithium Extraction Technology from Ore[J]. Conservation and Utilization of Mineral Resources, 2020, 40(5): 17-23. doi: 10.13779/j.cnki.issn1001-0076.2020.05.003
Citation: ZHANG Xiufeng, TAN Xiumin, LIU Weizao, WANG Wei, ZHANG Lizhen. Current Status and Research Progress of Lithium Extraction Technology from Ore[J]. Conservation and Utilization of Mineral Resources, 2020, 40(5): 17-23. doi: 10.13779/j.cnki.issn1001-0076.2020.05.003

矿石提锂技术现状与研究进展

  • 基金项目:
    中国地质调查局地质调查项目(DD20201174);河南省科技攻关项目(182102310913)
详细信息
    作者简介: 张秀峰(1986-), 男, 博士, 高级工程师, 主要从事矿产资源综合利用研究
  • 中图分类号: TF826+.3;TD955

Current Status and Research Progress of Lithium Extraction Technology from Ore

  • 锂是新能源产业发展不可或缺的关键矿产原料。2018年锂电池行业的锂消费量占比56%,超过其它行业锂消费量的总和。尽管卤水锂资源总量占据优势,并且卤水提锂成本低于矿石提锂,但2018年以来矿石提锂产量超过卤水提锂产量,未来矿石提锂产量占比仍将进一步提高。基于矿石提锂的举足轻重地位,对锂辉石、锂云母、铁锂云母、透锂长石和磷锂铝石等岩石矿物提锂技术进行综述,总结分析硫酸法、石灰烧结法、硫酸盐法、氯化焙烧法和压煮法在矿石提锂方面的研究进展,指出未来矿石提锂技术趋势是降能耗、降成本。

  • 加载中
  • 图 1  锂辉石提取碳酸锂的硫酸法工艺流程示意图[7]

    Figure 1. 

    图 2  硫酸浸出法从锂云母中提取锂的工艺流程示意图[7, 20]

    Figure 2. 

    图 3  锂云母提锂的Sileach工艺原则流程[27]

    Figure 3. 

  • [1]

    毛景文, 杨宗喜, 谢桂青, 等.关键矿产——国际动向与思考[J].矿床地质, 2019, 38(4):689-698.

    [2]

    杨卉芃, 柳林, 丁国峰.全球锂矿资源现状及发展趋势[J].矿产保护与利用, 2019, 39(5):26-40. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=75498c57-431a-4720-8245-fa8040b638c4

    [3]

    KESLER S E, GRUBER P W, MEDINA P A, et al. Global lithium resources: relative importance of pegmatite, brine and other deposits[J]. Ore Geology Reviews, 2012, 48:55-69. doi: 10.1016/j.oregeorev.2012.05.006

    [4]

    王秋舒, 元春华.全球锂矿供应形势及我国资源安全保障建议[J].中国矿业, 2019, 28(5):1-6.

    [5]

    WIETELMANN ULRICH, MARTIN STEINBILD. Ullmann's Encyclopedia of Industrial Chemistry-Lithium and Lithium Compounds[M]. Frankfurt: Wiley-VCH Verlag GmbH & Co. KGaA, 2000.

    [6]

    DESSEMOND C, LAJOIE L F, SOUCY G, et al. Spodumene: The lithium market, resources and processes[J]. Minerals, 2019, 9(6):334. doi: 10.3390/min9060334

    [7]

    LI H, EKSTEEN J, KUANG G. Recovery of lithium from mineral resources: State-of-the-art and perspectives-A review[J]. Hydrometallurgy, 2019, 189: 105129. doi: 10.1016/j.hydromet.2019.105129

    [8]

    ROSALES G D, RUIZ M C, RODRIGUEZ M H. Novel process for the extraction of lithium from β-spodumene by leaching with HF[J]. Hydrometallurgy, 2014, 147:1-6.

    [9]

    GUO H, YU H, ZHOU A, et al. Kinetics of leaching lithium from α-spodumene in enhanced acid treatment using HF/H2SO4 as medium[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(2):407-415. doi: 10.1016/S1003-6326(19)64950-2

    [10]

    AVERILL W A, OLSON D L. A review of extractive processes for lithium from ores and brines[J]. Energy, 1978, 3(3):305-313. doi: 10.1016/0360-5442(78)90027-0

    [11]

    MAURICE A, OLIVIER C A. Carbonatizing roast of lithiumbearing ores: US 3380802[P], 1968-4-30.

    [12]

    XING P, WANG C, ZENG L, et al. Lithium extraction and hydroxysodalite zeolite synthesis by hydrothermal conversion of α-spodumene[J]. ACS Sustainable Chemistry & Engineering, 2019, 7:9498-9505.

    [13]

    CHEN Y, TIAN Q, CHEN B, et al. Preparation of lithium carbonate from spodumene by a sodium carbonate autoclave process[J]. Hydrometallurgy, 2011, 109(1-2):43-46. doi: 10.1016/j.hydromet.2011.05.006

    [14]

    AME S K, JOHAN W S. Method of recovering lithium salts from lithium-containing minerals: US2230167[P], 1941-1-28.

    [15]

    BARBOSA L, VALENTE G, OROSCO R, et al. Lithium extraction from β-spodumene through chlorination with chlorine gas[J]. Minerals Engineering, 2014, 56: 29-34. doi: 10.1016/j.mineng.2013.10.026

    [16]

    BARBOSA L I, GONZALEZ J A, RUIZ M D C. Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride[J]. Thermochimica Acta, 2015, 605:63-67. doi: 10.1016/j.tca.2015.02.009

    [17]

    SALAKJANI N K, SINGH P, NIKOLOSKI A N. Production of Lithium-A Literature Review. Part 2. Extraction from Spodumene[J]. Mineral Processing and Extractive Metallurgy Review, 2019: 1-16.

    [18]

    LIU J L, YIN, Z L, LI X H, et al. Recovery of valuable metals from lepidolite by atmosphere leaching and kinetics on dissolution of lithium[J]. Transactions of Nonferrous Metals Society of China, 2019, 29 (3):641-649. doi: 10.1016/S1003-6326(19)64974-5

    [19]

    LIU J, YIN Z, LI X, et al. A novel process for the selective precipitation of valuable metals from lepidolite[J]. Minerals Engineering, 2019, 135: 29-36. doi: 10.1016/j.mineng.2018.11.046

    [20]

    李良彬, 胡耐根, 黄学武, 等.硫酸法锂云母提锂工艺中精硫酸锂溶液的生产方法: 2006101453625[P].2008-5-28.

    [21]

    张秀峰, 伊跃军, 张利珍, 等.锂云母精矿的硫酸熟化研究[J].矿产保护与利用, 2018(4):59-62. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=238375e4-5f3f-4eaf-9b5a-ef1567661fee

    [22]

    ZHANG X, TAN X, LI C, et al. Energy-efficient and simultaneous extraction of lithium, rubidium and cesium from lepidolite concentrate via sulfuric acid baking and water leaching[J]. Hydrometallurgy, 2019, 185: 244-249. doi: 10.1016/j.hydromet.2019.02.011

    [23]

    VIECELI N, NOGUEIRA C A, PEREIRA M F C, et al. Effects of mechanical activation on lithium extraction from a lepidolite ore concentrate[J]. Minerals Engineering, 2017, 102:1-14. doi: 10.1016/j.mineng.2016.12.001

    [24]

    VIECELI N, NOGUEIRA C A, PEREIRA M F C, et al. Recovery of lithium carbonate by acid digestion and hydrometallurgical processing from mechanically activated lepidolite[J]. Hydrometallurgy, 2018, 175:1-10. doi: 10.1016/j.hydromet.2017.10.022

    [25]

    郭慧.锂云母氟化学法提锂反应机理及浸取液硫酸盐体系成矾除铝的研究[D].福州: 福州大学, 2014.

    [26]

    GUO H, KUANG G, WAN H, et al. Enhanced acid treatment to extract lithium from lepidolite with a fluorine-based chemical method[J]. Hydrometallurgy, 2019, 183:9-19. doi: 10.1016/j.hydromet.2018.10.020

    [27]

    GRIFFITH C S, GRIFFIN A C, ROPER A, et al. Development of SiLeach? Technology for the Extraction of Lithium Silicate Minerals. Extraction 2018[C]. Springer International Publishing, Cham, pp. 2235-2245.

    [28]

    ROSALES G D, PINNA E G, SUAREZ D S, et al. Recovery process of Li, Al and Si from Lepidolite by leaching with HF[J]. Minerals, 2017, 7 (3), 36. doi: 10.3390/min7030036

    [29]

    林高逵.江西锂云母-石灰石烧结工艺的改进研究[J].稀有金属与硬质合金, 1999(137):46-48. http://qikan.cqvip.com/Qikan/Article/Detail?id=3513103

    [30]

    VIECELI N, NOGUEIRA C A, PEREIRA M F C, et al. Optimization of lithium extraction from lepidolite by roasting using sodium and calcium sulfates[J]. Mineral Processing & Extractive Metallurgy Review, 2017, 38(1): 62-72.

    [31]

    郭春平, 周健, 文小强, 等.锂云母硫酸盐法提取锂铷铯的研究[J].有色金属(冶炼部分), 2015(12):31-33. http://www.cnki.com.cn/Article/CJFDTotal-METE201512010.htm

    [32]

    HUI S, JIAYING J, JIAN Z, et al. Lithium recovery from lepidolite roasted with potassium compounds[J]. Minerals Engineering, 2020, 145, 106087. doi: 10.1016/j.mineng.2019.106087

    [33]

    YAN Q, LI X, WANG Z, et al. Extraction of lithium from lepidolite by sulfation roasting and water leaching[J]. International Journal of Mineral Processing, 2012, 110-111:1-5. doi: 10.1016/j.minpro.2012.03.005

    [34]

    YAN Q, LI X, WANG Z, et al. Extraction of valuable metals from lepidolite[J]. Hydrometallurgy, 2012, 117-118 (0):116-118. http://www.sciencedirect.com/science/article/pii/S0304386X1200031X

    [35]

    颜群轩.锂云母中有价金属的高效提取研究[D].长沙: 中南大学, 2012.

    [36]

    仇世源, 张景怀, 阚素荣, 等.宜春锂云母食盐压煮法制取碳酸锂新工艺[J].新疆有色金属, 1996(1):44-48.

    [37]

    YAN Q, LI X, YIN Z, et al. A novel process for extracting lithium from lepidolite[J]. Hydrometallurgy, 2012, 121-124:54-59. doi: 10.1016/j.hydromet.2012.04.006

    [38]

    王文祥, 黄际芬, 刘志宏.宜春锂云母压煮溶出新工艺研究[J].有色金属(冶炼部分), 2001(5):19-21.

    [39]

    ZHANG X, ALDAHRI T, TAN X, et al. Efficient co-extraction of lithium, rubidium, cesium and potassium from lepidolite by process intensification of chlorination roasting[J]. Chemical Engineering and Processing-Process Intensification, 2020, 147: 107777. doi: 10.1016/j.cep.2019.107777

    [40]

    YAN Q X, LI X H., WANG Z X, et al. Extraction of lithium from lepidolite using chlorination roasting-water leaching process[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(7):1753-1759. doi: 10.1016/S1003-6326(11)61383-6

    [41]

    伍习飞, 尹周澜, 李新海, 等.氯化焙烧法处理宜春锂云母矿提取锂钾的研究[J].矿冶工程, 2012, 32(3):95-98.

    [42]

    MARTIN G, PATZOLD C, BERTAU M. Integrated process for lithium recovery from zinnwaldite[J]. International Journal of Mineral Processing, 2017, 160:8-15. doi: 10.1016/j.minpro.2017.01.005

    [43]

    JANDOVA J, VU H N, BELKOVA T, et al. Obtaining Li2CO3 from zinnwaldite wastes[J]. Ceramics-Silikáty, 2009, 53 (2):108-112.

    [44]

    JANDOVA J, DVORAK P, VU H N. Processing of zinnwaldite waste to obtain Li2CO3[J]. Hydrometallurgy, 2010, 103 (1):12-18.

    [45]

    VU H, BERNARDI J, JANDOVA J, et al. Lithium and rubidium extraction from zinnwaldite by alkali digestion process: Sintering mechanism and leaching kinetics[J]. International Journal of Mineral Processing, 2013, 123:9-17. doi: 10.1016/j.minpro.2013.04.014

    [46]

    SIAME E, PASCOE R D. Extraction of lithium from micaceous waste from China clay production[J]. Minerals Engineering, 2011, 24 (14):1595-1602. doi: 10.1016/j.mineng.2011.08.013

    [47]

    MARTIN G, SCHNEIDER A, VOIGT W, et al. Lithium extraction from the mineral zinnwaldite: part Ⅱ: Lithium carbonate recovery by direct carbonation of sintered zinnwaldite concentrate[J]. Minerals Engineering, 2017, 110:75-81. doi: 10.1016/j.mineng.2017.04.009

    [48]

    SCHNEIDER A, SCHMIDT H, MEVEN M, et al. Lithium extraction from the mineral zinnwaldite: part Ⅰ: effect of thermal treatment on properties and structure of zinnwaldite[J]. Minerals Engineering, 2017, 111: 55-67. doi: 10.1016/j.mineng.2017.05.006

    [49]

    SITANDO O, CROUSE P L. Processing of a Zimbabwean petalite to obtain lithium carbonate[J]. International Journal of Mineral Processing, 2012, 102: 45-50.

    [50]

    CHOUBEY P K, KIM M S, SRIVASTAVA R R, et al. Advance review on the exploitation of the prominent energy-storage element: Lithium. Part Ⅰ: from mineral and brine resources[J]. Minerals Engineering, 2016, 89:119-137. doi: 10.1016/j.mineng.2016.01.010

    [51]

    HANS S, OSKAR R. Process for the production of lithium salts: US2040573[P]. 1936-5-12.

    [52]

    KALENOWSKI L H, RUNKE S M. Recovery of Lithium from Spodumene-Amblygonite Mixtures[R]. USA: Bureau of Mines, Department of the Interior, 48631952, 1952.

    [53]

    FREVEL L K, KRESSLEY L J. Separation of lithium from lithium bearing micas and amblygonite: US3032389[P]. 1962-5-1.

  • 加载中

(3)

计量
  • 文章访问数:  3747
  • PDF下载数:  594
  • 施引文献:  0
出版历程
收稿日期:  2020-08-05
刊出日期:  2020-10-25

目录