-
摘要:
综述了纳米管状埃洛石在医学与生物医学、纳米复合材料和环境污染治理等领域的应用研究进展。重点评述了埃洛石在上述领域的研究现状、面临挑战和未来前景。埃洛石由于自身独特的纳米管状结构和好的生物相容性,可用于药物、生物活性分子、化妆品、除草剂、抗氧化剂、抗腐蚀剂和阻燃剂等的储存和可控释放,在药物输送、抗微生物材料、自修复聚合物以及再生医学等领域具有广阔的应用前景,是我国具有资源优势的一种重要非金属矿资源。埃洛石在人体内的相容性和细胞毒性以及埃洛石作为药物或生物活性分子(如小干扰RNA)载体等研究是今后需大力关注和投入的研究方向。
Abstract:Research advances on the applications of nanotubular halloysite in medicine and biomedicine, nanocomposite, environmental pollution remediation and other fields are reviewed. The research status, challenges and prospects of halloysite in these fields are mainly discussed. Owing to its unique nanotubular structure and good biocompatibility, halloysite can be used for the delivery and controlled release of drugs, bioactive molecules, cosmetics, herbicides, antioxidants, corrosion inhibitors and flame retardants, showing its great promise in drug delivery, antimicrobial materials, self-healing polymers and regenerative medicine. Thus, halloysite is regarded as a very important non-metallic mineral resource with superiority of our country. The in vivo compatibility and cytotoxicity of halloysite for humans and the application of halloysite for the delivery of drugs and bioactive molecules (e.g., small interfering RNA) are research areas that need to pay more attention and devotion.
-
Key words:
- halloysite /
- nanotube /
- biomedicine /
- nanocomposite /
- pollution remediation /
- non-metallic mineral
-
-
图 1 埃洛石的结构和形貌图:(a)10 Å埃洛石的晶体结构示意图;(b)埃洛石纳米管结构示意图;(c,d)埃洛石的透射电子显微镜(TEM)和原子力显微镜(AFM)图[1]
Figure 1.
图 2 3-氨基丙基三乙氧基硅烷(APTES)改性前后的HNT用于布洛芬的负载和释放[34]
Figure 2.
图 3 HNT/siRIPK4复合物的体内传输、RIPK4抑制和膀胱癌治疗过程示意图[37]
Figure 3.
图 4 HNT为模板合成金纳米颗粒的TEM图:(a)HNT;(b-d)负载金纳米颗粒的HNT[87]
Figure 4.
图 5 HNT内腔中脲酶催化CaCO3合成[11]
Figure 5.
-
[1] Yuan P, Tan DY, Annabi-Bergaya F. Properties and applications of halloysite nanotubes:Recent research advances and future prospects[J]. Applied Clay Science, 2015, 112:75-93. http://cn.bing.com/academic/profile?id=d5bf3a136c157782c35f2c3ec90acbab&encoded=0&v=paper_preview&mkt=zh-cn
[2] 袁鹏, 杜培鑫, 周军明, 等.铝硅酸盐纳米矿物的地质意义和资源价值再认识[J].岩石学报, 2019, 35:164-176. doi: 10.18654/1000-0569/2019.01.13
[3] 谭道永, 曲天晨, 董发勤, 等.管状埃洛石的微结构对其负载活性的制约[J].矿物学报, 2018, 38(4):437-442. http://d.old.wanfangdata.com.cn/Periodical/kwxb201804010
[4] Yuan P, Southon PD, Liu ZW, et al. Functionalization of halloysite clay nanotubes by grafting with gamma-aminopropyltriethoxysilane[J]. Journal of Physical Chemistry C, 2008, 112(40):15742-15751. doi: 10.1021/jp805657t
[5] Lvov YM, Shchukin DG, Möhwald H, et al. Halloysite clay nanotubes for controlled release of protective agents[J]. ACS Nano, 2008, 2(5):814-820. doi: 10.1021/nn800259q
[6] Liu RC, Zhang B, Mei DD, et al. Adsorption of methyl violet from aqueous solution by halloysite nanotubes[J]. Desalination, 2011, 268(1-3):111-116. doi: 10.1016/j.desal.2010.10.006
[7] Tan DY, Yuan P, Liu D, et al. Surface modifications of halloysite[M]//Yuan P, Thill A, Annabi-Bergaya F. Nanosized tubular clay minerals. Amsterdam: Elsevier, 2016: 167-201.
[8] 袁鹏.纳米结构矿物的特殊结构和表-界面反应性[J].地球科学, 2018, 43(5):1384-1407. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0120181103210783
[9] Ma W, Wu H, Higaki Y, et al. Halloysite nanotubes:Green nanomaterial for functional organic-inorganic nanohybrids[J]. The Chemical Record, 2018, 18:1-15. doi: 10.1002/tcr.201880101
[10] Du P, Yuan P, Thill A, et al. Insights into the formation mechanism of imogolite from a full-range observation of its sol-gel growth[J]. Applied Clay Science, 2017, 150:115-124. doi: 10.1016/j.clay.2017.09.021
[11] Shchukin DG, Sukhorukov GB, Price RR, et al. Halloysite nanotubes as biomimetic nanoreactors[J]. Small, 2005, 1(5):510-513. doi: 10.1002/smll.200400120
[12] Yuan P, Southon PD, Liu ZW, et al. Organosilane functionalization of halloysite nanotubes for enhanced loading and controlled release[J]. Nanotechnology, 2012, 23(37):375705. doi: 10.1088/0957-4484/23/37/375705
[13] Tan DY, Yuan P, Annabi-Bergaya F, et al. Natural halloysite nanotubes as mesoporous carriers for the loading of ibuprofen[J]. Microporous and Mesoporous Materials, 2013, 179:89-98. doi: 10.1016/j.micromeso.2013.05.007
[14] Luo P, Zhao YF, Zhang B, et al. Study on the adsorption of neutral red from aqueous solution onto halloysite nanotubes[J]. Water Research, 2010, 44(5):1489-1497. doi: 10.1016/j.watres.2009.10.042
[15] Lvov YM, DeVilliers MM, Fakhrullin RF. The application of halloysite tubule nanoclay in drug delivery[J]. Expert Opinion on Drug Delivery, 2016, 13(7):977-986. doi: 10.1517/17425247.2016.1169271
[16] 刘明贤.具有新型界面结构的聚合物-埃洛石纳米复合材料[D].广州: 华南理工大学, 2010.
http://cdmd.cnki.com.cn/Article/CDMD-10561-2010229227.htm [17] Vergaro V, Abdullayev E, Lvov YM, et al. Cytocompatibility and uptake of halloysite clay nanotubes[J]. Biomacromolecules, 2010, 11(3):820-826. doi: 10.1021/bm9014446
[18] Lai XY, Agarwal M, Lvov YM, et al. Proteomic profiling of halloysite clay nanotube exposure in intestinal cell co-culture[J]. Journal of Applied Toxicology, 2013, 33(11):1316-1329. http://cn.bing.com/academic/profile?id=cf1eb24516d96c1395d393763f4a0eeb&encoded=0&v=paper_preview&mkt=zh-cn
[19] Ahmed FR, Shoaib MH, Azhar M, et al. In-vitro assessment of cytotoxicity of halloysite nanotubes against HepG2, HCT116 and human peripheral blood lymphocytes[J]. Colloids and Surfaces B-Biointerfaces, 2015, 135:50-55. doi: 10.1016/j.colsurfb.2015.07.021
[20] Kamalieva RF, Ishmukhametov IR, Batasheva SN, et al. Uptake of halloysite clay nanotubes by human cells:Colourimetric viability tests and microscopy study[J]. Nano-Structures & Nano-Objects, 2018, 15:54-60. http://cn.bing.com/academic/profile?id=044568e1c69cc771c6dff972a0ab184b&encoded=0&v=paper_preview&mkt=zh-cn
[21] Cavallaro G, Lazzara G, Konnova S, et al. Composite films of natural clay nanotubes with cellulose and chitosan[J]. Green Materials, 2014, 2(4):232-242. doi: 10.1680/gmat.14.00014
[22] Fakhrullina GI, Akhatova FS, Lvov YM, et al. Toxicity of halloysite clay nanotubes in vivo:A Caenorhabditis elegans study[J]. Environmental Science-Nano, 2015, 2(1):54-59. doi: 10.1039/C4EN00135D
[23] Kryuchkova M, Danilushkina A, Lvov Y, et al. Evaluation of toxicity of nanoclays and graphene oxide in vivo:A Paramecium caudatum study[J]. Environmental Science-Nano, 2016, 3(2):442-452. doi: 10.1039/C5EN00201J
[24] Bellani L, Giorgetti L, Riela S, et al. Ecotoxicity of halloysite nanotube-supported palladium nanoparticles in Raphanus sativus L[J]. Environmental Toxicology and Chemistry, 2016, 35(10):2503-2510. doi: 10.1002/etc.3412
[25] Wang X, Gong J, Gui Z, et al. Halloysite nanotubes-induced Al accumulation and oxidative damage in liver of mice after 30-day repeated oral administration[J]. Environmental Toxicology, 2018, 33:623-630. doi: 10.1002/tox.22543
[26] 王雪, 徐小龙, 龚家春, 等.埃洛石纳米管的口服毒性研究(英文)[J].中国科学技术大学学报, 2017, 47(12):988-995. doi: 10.3969/j.issn.0253-2778.2017.12.003
[27] Wang X, Gong J, Rong R, et al. Halloysite nanotubes-induced Al accumulation and fibrotic response in lung of mice after 30-day repeated oral administration[J]. Journal of Agricultural and Food Chemistry, 2018, 66(11):2925-2933. doi: 10.1021/acs.jafc.7b04615
[28] Leporatti S. Halloysite clay nanotubes as nano-bazookas for drug delivery[J]. Polymer International, 2017, 66(8):1111-1118. doi: 10.1002/pi.5347
[29] Hanif M, Jabbar F, Sharif S, et al. Halloysite nanotubes as a new drug-delivery system:A review[J]. Clay Minerals, 2016, 51(3):469-477. doi: 10.1180/claymin.2016.051.3.03
[30] Price RR, Gaber BP, Lvov Y. In-vitro release characteristics of tetracycline HCl, khellin and nicotinamide adenine dineculeotide from halloysite; a cylindrical mineral[J]. Journal of Microencapsulation, 2001, 18(6):713-722. doi: 10.1080/02652040010019532
[31] Veerabadran NG, Price RR, Lvov YM. Clay nanotubes for encapsulation and sustained release of drugs[J]. Nano, 2007, 2(2):115-120. doi: 10.1142/S1793292007000441
[32] Ward CJ, Song S, Davis EW. Controlled release of tetracycline-HCl from halloysite-polymer composite films[J]. Journal of nanoscience and nanotechnology, 2010, 10(10):6641-6649. doi: 10.1166/jnn.2010.2647
[33] Carazo E, Borregosánchez A, Garcíavillén F, et al. Assessment of halloysite nanotubes as vehicles of isoniazid[J]. Colloids & Surfaces B Biointerfaces, 2017, 160:337-344. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4d1093106e373dcf98c5a2be341a633d
[34] Tan DY, Yuan P, Annabi-Bergaya F, et al. Loading and in vitro release of ibuprofen in tubular halloysite[J]. Applied Clay Science, 2014, 96:50-55. doi: 10.1016/j.clay.2014.01.018
[35] Rawtani D, Pandey G, Tharmavaram M, et al. Development of a novel 'nanocarrier' system based on halloysite nanotubes to overcome the complexation of ciprofloxacin with iron:An in vitro approach[J]. Applied Clay Science, 2017, 150:293-302. doi: 10.1016/j.clay.2017.10.002
[36] Liu F, Bai L, Zhang H, et al. Smart H2O2-responsive drug delivery system made by halloysite nanotubes and carbohydrate polymers[J]. ACS Applied Materials & Interfaces, 2017, 9(37):31626. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1e136d950c4ec0cbce0515727e75393e
[37] Liu J, Zhang Y, Zeng Q, et al. Delivery of RIPK4 small interfering RNA for bladder cancer therapy using natural halloysite nanotubes[J]. Science Advances, 2019, 5(9):eaaw6499. doi: 10.1126/sciadv.aaw6499
[38] Ana CS, Caroline F, Francisco V, et al. Halloysite clay nanotubes for life sciences applications:From drug encapsulation to bioscaffold[J]. Advances in Colloid and Interface Science, 2018, 257:58-70. doi: 10.1016/j.cis.2018.05.007
[39] Nitya G, Nair GT, Mony U, et al. In vitro evaluation of electrospun PCL/nanoclay composite scaffold for bone tissue engineering[J]. Journal of Materials Science-Materials in Medicine, 2012, 23(7):1749-1761. doi: 10.1007/s10856-012-4647-x
[40] Liu MX, Wu CC, Jiao YP, et al. Chitosan-halloysite nanotubes nanocomposite scaffolds for tissue engineering[J]. Journal of Materials Chemistry B, 2013, 1(15):2078-2089. doi: 10.1039/c3tb20084a
[41] Liu MX, Dai LB, Shi HZ, et al. In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering[J]. Materials Science & Engineering C-Materials for Biological Applications, 2015, 49:700-712. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=27d09a9e0423790c8271a19b20689136
[42] Wei WB, Abdullayev E, Hollister A, et al. Clay nanotube/poly(methyl methacrylate) bone cement composites with sustained antibiotic release[J]. Macromolecular Materials and Engineering, 2012, 297(7):645-653. doi: 10.1002/mame.201100309
[43] Alavi M, Totonchi A, Okhovat MA, et al. The effect of a new impregnated gauze containing bentonite and halloysite minerals on blood coagulation and wound healing[J]. Blood Coagulation & Fibrinolysis, 2014, 25(8):856-859. http://cn.bing.com/academic/profile?id=f135fa0f925f3babde17f229d3dd91b1&encoded=0&v=paper_preview&mkt=zh-cn
[44] Hughes AD, King MR. Use of naturally occurring halloysite nanotubes for enhanced capture of flowing cells[J]. Langmuir, 2010, 26(14):12155-12164. doi: 10.1021/la101179y
[45] Hughes AD, Mattison J, Powderly JD, et al. Rapid isolation of viable circulating tumor cells from patient blood samples[J]. Jove-Journal of Visualized Experiments, 2012, (64):4248. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3471307
[46] He R, Liu MX, Shen Y, et al. Large-area assembly of halloysite nanotubes for enhancing the capture of tumor cells[J]. Journal of Materials Chemistry B, 2017, 5(9):1712-1723. doi: 10.1039/C6TB02538B
[47] Liu M, Huo Z, Liu T, et al. Self-assembling halloysite nanotubes into concentric ring patterns in a sphere-on-flat geometry[J]. Langmuir, 2017, 33:3088-3098. doi: 10.1021/acs.langmuir.6b04460
[48] Stavitskaya AV, Novikov AA, Kotelev MS, et al. Fluorescence and cytotoxicity of cadmium sulfide quantum dots stabilized on clay nanotubes[J]. Nanomaterials, 2018, 8:806391. http://cn.bing.com/academic/profile?id=c17b87b6cee0f1ab8f0fe2e25e79e852&encoded=0&v=paper_preview&mkt=zh-cn
[49] Abdullayev E, Lvov Y. Clay nanotubes for corrosion inhibitor encapsulation:Release control with end stoppers[J]. Journal of Materials Chemistry, 2010, 20(32):6681-6687. doi: 10.1039/c0jm00810a
[50] 杜阳, 刘颖, 冯年平.埃洛石:缓释药物的新型载体[J].药学进展, 2012, 36(7):315-320. doi: 10.3969/j.issn.1001-5094.2012.07.004
[51] Donaldson L. Halloysite clay nanotubes hold promise[J]. Materials Today, 2016, 19(1):5-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eeef3bceb16f61a783d049a570cbd9ad
[52] Du ML, Guo BC, Jia DM. Newly emerging applications of halloysite nanotubes:A review[J]. Polymer International, 2010, 59(5):574-582. http://cn.bing.com/academic/profile?id=1195795cf69da3efbca377afd3540447&encoded=0&v=paper_preview&mkt=zh-cn
[53] 张俊珩.埃洛石纳米管的表面改性及其对环氧树脂复合材料结构与性能的影响[D]广州: 华南理工大学, 2011.
http://cdmd.cnki.com.cn/Article/CDMD-10561-1012452857.htm [54] 伍巍, 吴鹏君, 何丁, 等.埃洛石纳米管在高分子纳米复合材料中的应用进展[J].化工进展, 2011, 30(12):2647-2651, 2657. http://www.cnki.com.cn/Article/CJFDTotal-HGJZ201112013.htm
[55] Lu D, Chen HB, Wu JS, et al. Direct measurements of the young's modulus of a single halloysite nanotube using a transmission electron microscope with a bending stage[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(9):7789-7793. doi: 10.1166/jnn.2011.4720
[56] Abdullayev E, Lvov Y. Halloysite clay nanotubes as a ceramic "skeleton" for functional biopolymer composites with sustained drug release[J]. Journal of Materials Chemistry B, 2013, 1(23):2894-2903. doi: 10.1039/c3tb20059k
[57] Lvov Y, Abdullayev E. Functional polymer-clay nanotube composites with sustained release of chemical agents[J]. Progress in Polymer Science, 2013, 38(10-11):1690-1719. doi: 10.1016/j.progpolymsci.2013.05.009
[58] Lvov Y, Wang W, Zhang L, et al. Halloysite clay nanotubes for loading and sustained release of functional compounds[J]. Advanced Materials, 2015, 28(6):1227-1250. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/adma.201502341
[59] Ismail H, Pasbakhsh P, Fauzi MNA, et al. Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites[J]. Polymer Testing, 2008, 27(7):841-850. doi: 10.1016/j.polymertesting.2008.06.007
[60] Du ML, Guo BC, Lei YD, et al. Carboxylated butadiene-styrene rubber/halloysite nanotube nanocomposites:Interfacial interaction and performance[J]. Polymer, 2008, 49(22):4871-4876. doi: 10.1016/j.polymer.2008.08.042
[61] 何毅, 丁亿鑫, 章杰, 等.TiO_2负载埃洛石纳米管杂化材料的制备及其在环氧复合涂层中的应用[J].涂料工业, 2015, 45(5):1-6. doi: 10.3969/j.issn.0253-4312.2015.05.001
[62] Ning N-Y, Yin Q-J, Luo F, et al. Crystallization behavior and mechanical properties of polypropylene/halloysite composites[J]. Polymer, 2007, 48(25):7374-7384. doi: 10.1016/j.polymer.2007.10.005
[63] Deng SQ, Zhang JN, Ye L, et al. Toughening epoxies with halloysite nanotubes[J]. Polymer, 2008, 49(23):5119-5127. doi: 10.1016/j.polymer.2008.09.027
[64] Abdullayev E, Price R, Shchukin D, et al. Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole[J]. ACS Applied Materials & Interfaces, 2009, 1(7):1437-1443. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=560cd010e727dc7673deaff60d20cc8c
[65] Liu MX, Zhang Y, Zhou CR. Nanocomposites of halloysite and polylactide[J]. Applied Clay Science, 2013, 75-76:52-59. doi: 10.1016/j.clay.2013.02.019
[66] Smith RJ, Holder KM, Ruiz S, et al. Environmentally benign halloysite nanotube multilayer assembly significantly reduces polyurethane flammability[J]. Advanced Functional Materials, 2017, 28(27):1703289. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/adfm.201703289
[67] Liu YC, Tu WW, Chen MY, et al. A mussel-induced method to fabricate reduced graphene oxide/halloysite nanotubes membranes for multifunctional applications in water purification and oil/water separation[J]. Chemical Engineering Journal, 2018, 336:263-277. doi: 10.1016/j.cej.2017.12.043
[68] Lazzara G, Cavallaro G, Panchal A, et al. An assembly of organic-inorganic composites using halloysite clay nanotubes[J]. Current Opinion in Colloid & Interface Science, 2018, 35:42-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6f5bd5a1b74463c4aee00edbf1d5a3c6
[69] Wu F, Zheng JQ, Li ZX, et al. Halloysite nanotubes coated 3D printed PLA pattern for guiding human mesenchymal stem cells (hMSCs) orientation[J]. Chemical Engineering Journal, 2019, 359:672-683. doi: 10.1016/j.cej.2018.11.145
[70] Qin LJ, Zhao YF, Liu JD, et al. Oriented clay nanotube membrane assembled on microporous polymeric substrates[J]. ACS Applied Materials & Interfaces, 2016, 8(50):34914-34923. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9bb81d1f132a77975bb3c4ea2ca4c7bf
[71] Massaro M, Colletti CG, Lazzara G, et al. Halloysite nanotubes as support for metal-based catalysts[J]. Journal of Materials Chemistry A, 2017, 5(26):13276-13293. doi: 10.1039/C7TA02996A
[72] Philip A, Lihavainen J, Keinänen M, et al. Gold nanoparticle-decorated halloysite nanotubes-Selective catalysts for benzyl alcohol oxidation[J]. Applied Clay Science, 2017, 143:80-88. doi: 10.1016/j.clay.2017.03.015
[73] Sanchez-Ballester NM, Ramesh GV, Tanabe T, et al. Activated interiors of clay nanotubes for agglomeration-tolerant automotive exhaust remediation[J]. Journal of Materials Chemistry A, 2015, 3(12):6614-6619. doi: 10.1039/C4TA06966H
[74] Pandey G, Munguambe DM, Tharmavaram M, et al. Halloysite nanotubes-An efficient 'nano-support' for the immobilization of α-amylase[J]. Applied Clay Science, 2017, 136:184-191. doi: 10.1016/j.clay.2016.11.034
[75] Shu Z, Zhang Y, Yang Q, et al. Halloysite nanotubes supported Ag and ZnO nanoparticles with synergistically enhanced antibacterial activity[J]. Nanoscale Research Letters, 2017, 12(1):135. doi: 10.1186/s11671-017-1859-5
[76] Shu Z, Zhang Y, Ouyang J, et al. Characterization and synergetic antibacterial properties of ZnO and CeO2 supported by halloysite[J]. Applied Surface Science, 2017, 420:833-838. doi: 10.1016/j.apsusc.2017.05.219
[77] Zahidah KA, Kakooei S, Ismail MC, et al. Halloysite nanotubes as nanocontainer for smart coating application:A review[J]. Progress in Organic Coatings, 2017, 111:175-185. doi: 10.1016/j.porgcoat.2017.05.018
[78] 王绮, 李澄, 郑顺丽, 等.缓蚀剂在埃洛石上的担载与释放规律研究[J].材料导报, 2016, 30(8):61-64. http://d.old.wanfangdata.com.cn/Periodical/cldb201608013
[79] Shchukin DG, Lamaka SV, Yasakau KA, et al. Active anticorrosion coatings with halloysite nanocontainers[J]. The Journal of Physical Chemistry C, 2008, 112(4):958-964. doi: 10.1021/jp076188r
[80] Liu GY, Kang FY, Li BH, et al. Characterization of the porous carbon prepared by using halloysite as template and its application to EDLC[J]. Journal of Physics and Chemistry of Solids, 2006, 67(5-6):1186-1189. doi: 10.1016/j.jpcs.2006.01.044
[81] Li CP, Liu JG, Qu XZ, et al. Polymer-modified halloysite composite nanotubes[J]. Journal of Applied Polymer Science, 2008, 110(6):3638-3646. doi: 10.1002/app.28879
[82] Zhang L, Liu P. Facile fabrication of uniform polyaniline nanotubes with tubular aluminosilicates as templates[J]. Nanoscale Research Letters, 2008, 3(8):299-302. doi: 10.1007/s11671-008-9155-z
[83] Wang AP, Kang FY, Huang ZH, et al. Synthesis of mesoporous carbon nanosheets using tubular halloysite and furfuryl alcohol by a template-like method[J]. Microporous and Mesoporous Materials, 2008, 108(1-3):318-324. doi: 10.1016/j.micromeso.2007.04.021
[84] 周述慧, 传秀云.埃洛石为模板合成中孔炭[J].无机材料学报, 2014, 29(6):584-588. http://d.old.wanfangdata.com.cn/Periodical/wjclxb201406003
[85] 程志林, 曹宝冲, 刘赞.埃洛石纳米管模板法一步法制备一维碳纳米管/碳纳米棒混合纳米碳材料[J].无机化学学报, 2018, 34(10):1808-1816. doi: 10.11862/CJIC.2018.228
[86] Glotov A, Levshakov N, Stavitskaya A, et al. Templated self-assembly of ordered mesoporous silica on clay nanotubes[J]. Chemical Communications, 2019, 55(38):5507-5510. doi: 10.1039/C9CC01935A
[87] Rostamzadeh T, Khan MSI, Riche K, et al. Rapid and controlled in situ growth of noble netal nanostructures within halloysite clay nanotubes[J]. Langmuir, 2017, 33(45):13051-13059. doi: 10.1021/acs.langmuir.7b02402
[88] Vinokurov V, Glotov A, Chudakov Y, et al. Core/shell ruthenium-halloysite nanocatalysts for hydrogenation of phenol[J]. Industrial & Engineering Chemistry Research, 2017, 56(47):14043-14052. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a45d2e0c3730e74b97e4e84fe65a44f9
[89] Vinokurov VA, Stavitskaya AV, Ivanov EV, et al. Halloysite nanoclay based CdS formulations with high catalytic activity in hydrogen evolution reaction under visible light irradiation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(12):11316-11323. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f047e975f0f2000d78ff36fbabcf1619
[90] 孙攀, 刘国明, 吕冬, 等.埃洛石纳米管增强聚合物复合材料研究进展[J].中国科学:技术科学, 2015, 45(6):602-616. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce201506005
[91] Yuan P, Thill A, Bergaya F. Nanosized Tubular Clay Minerals[M]. Amsterdam:Elsevier, 2016.
[92] 秦嘉旭, 赵斌伟, 林雅逢, 等.埃洛石纳米管的改性及应用研究[J].河南化工, 2011, 28(11):27-30. doi: 10.3969/j.issn.1003-3467.2011.11.007
[93] Zhang HL, Cheng C, Song HZ, et al. A facile one-step grafting of polyphosphonium onto halloysite nanotubes initiated by Ce(Ⅳ)[J]. Chemical Communications, 2019, 55(8):1040-1043. doi: 10.1039/C8CC08667B
[94] Zhao M, Liu P. Adsorption behavior of methylene blue on halloysite nanotubes[J]. Microporous and Mesoporous Materials, 2008, 112(1):419-424. http://cn.bing.com/academic/profile?id=de5d7f4415473580c0c7f0a56be2cb58&encoded=0&v=paper_preview&mkt=zh-cn
[95] Krawczyk-Coda M. Halloysite nanotubes as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction for the determination of bismuth in water samples using high-resolution continuum source graphite-furnace atomic absorption spectrometry[J]. Spectrochimica Acta Part B-Atomic Spectroscopy, 2017, 129:21-27. doi: 10.1016/j.sab.2017.01.003
[96] 陈廷方, 易发成, 冯启明, 等.北川埃洛石黏土对Sr、Co、Cs的吸附性能研究[J].中国矿业, 2011, 20(3):74-77. doi: 10.3969/j.issn.1004-4051.2011.03.021
[97] Maziarz P, Matusik J. The effect of acid activation and calcination of halloysite on the efficiency and selectivity of Pb(Ⅱ), Cd(Ⅱ), Zn(Ⅱ) and As(Ⅴ) uptake[J]. Clay Minerals, 2016, 51(3):385-394. doi: 10.1180/claymin.2016.051.3.06
[98] Kilislioglu A, Bilgin B. Adsorption of uranium on halloysite[J]. Radiochimica Acta, 2002, 90(3):155-160. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ract.90.3.155
[99] Zheng YA, Wang AQ. Enhanced adsorption of ammonium using hydrogel composites based on chitosan and halloysite[J]. Journal of Macromolecular Science Part A-Pure and Applied Chemistry, 2010, 47(1):33-38. http://cn.bing.com/academic/profile?id=bb644bdfeb02445dfb721ec10f5ad0e5&encoded=0&v=paper_preview&mkt=zh-cn
[100] Deng LL, Yuan P, Liu D, et al. Effects of microstructure of clay minerals, montmorillonite, kaolinite and halloysite, on their benzene adsorption behaviors[J]. Applied Clay Science, 2017, 143:184-191. doi: 10.1016/j.clay.2017.03.035
[101] Zhou TZ, Li CP, Jin HL, et al. Effective adsorption/reduction of Cr(Ⅵ) oxyanion by halloysite@polyaniline hybrid nanotubes[J]. ACS Applied Materials & Interfaces, 2017, 9(7):6030-6043. http://www.ncbi.nlm.nih.gov/pubmed/28121121
[102] Abdullayev E, Joshi A, Wei WB, et al. Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide[J]. ACS Nano, 2012, 6(8):7216-7226. doi: 10.1021/nn302328x
[103] Shu Z, Chen Y, Zhou J, et al. Preparation of halloysite-derived mesoporous silica nanotube with enlarged specific surface area for enhanced dye adsorption[J]. Applied Clay Science, 2016, 132:114-121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d83a8a7cf026d2ca8463d95cd21f37ba
[104] Deng L, Yuan P, Liu D, et al. Effects of calcination and acid treatment on improving benzene adsorption performance of halloysite[J]. Applied Clay Science, 2019, 181:105240. doi: 10.1016/j.clay.2019.105240
[105] Almasri DA, Saleh NB, Atieh MA, et al. Adsorption of phosphate on iron oxide doped halloysite nanotubes[J]. Scientific Reports, 2019, 9:3232. doi: 10.1038/s41598-019-39035-2
[106] Yu L, Wang H, Zhang Y, et al. Recent advances in halloysite nanotube derived composites for water treatment[J]. Environmental Science-Nano, 2016, 3(1):28-44. doi: 10.1039/C5EN00149H
[107] Zatta L, Gardolinski JEFD, Wypych F. Raw halloysite as reusable heterogeneous catalyst for esterification of lauric acid[J]. Applied Clay Science, 2011, 51(1-2):165-169. doi: 10.1016/j.clay.2010.10.020
[108] Tae JW, Jang BS, Kim JR, et al. Catalytic degradation of polystyrene using acid-treated halloysite clays[J]. Solid State Ionics, 2004, 172(1-4):129-133. doi: 10.1016/j.ssi.2004.05.013
[109] Wang R, Jiang G, Ding Y, et al. Photocatalytic activity of heterostructures based on TiO2 and halloysite nanotubes[J]. ACS Appl Mater Interfaces, 2011, 3(10):4154-4158. doi: 10.1021/am201020q
[110] Machado GS, Castro KADF, Wypych F, et al. Immobilization of metalloporphyrins into nanotubes of natural halloysite toward selective catalysts for oxidation reactions[J]. Journal of Molecular Catalysis A-Chemical, 2008, 283(1-2):99-107. doi: 10.1016/j.molcata.2007.12.009
[111] Wang L, Chen JL, Ge L, et al. Halloysite-nanotube-supported Ru nanoparticles for ammonia catalytic decomposition to produce COx-free hydrogen[J]. Energy & Fuels, 2011, 25(8):3408-3416. http://cn.bing.com/academic/profile?id=c02cc02eaa1d93133c13538d191c7a7b&encoded=0&v=paper_preview&mkt=zh-cn
[112] von Klitzing R, Stehl D, Pogrzeba T, et al. Halloysites stabilized emulsions for hydroformylation of long chain olefins[J]. Advanced Materials Interfaces, 2017, 4:1600435. doi: 10.1002/admi.201600435
[113] Owoseni O, Zhang YH, Su Y, et al. Tuning the wettability of halloysite clay nanotubes by surface carbonization for optimal emulsion stabilization[J]. Langmuir, 2015, 31(51):13700-13707. doi: 10.1021/acs.langmuir.5b03878
[114] Yu T, Swientoniewski LT, Omarova M, et al. Investigation of amphiphilic polypeptoid-functionalized halloysite nanotubes as emulsion stabilizer for oil spill remediation[J]. ACS Applied Materials & Interfaces, 2019, 11(31):27944-27953. http://cn.bing.com/academic/profile?id=091c1fe2983ce6e59c4d1400932abaa3&encoded=0&v=paper_preview&mkt=zh-cn
[115] Zhou L, He Y, Shi H, et al. One-pot route to synthesize HNTs@PVDF membrane for rapid and effective separation of emulsion-oil and dyes from waste water[J]. Journal of Hazardous Materials, 2019, 380:120865. doi: 10.1016/j.jhazmat.2019.120865
[116] Wei YF, Yuan P, Liu D, et al. Activation of natural halloysite nanotubes by introducing lanthanum oxycarbonate nanoparticles via co-calcination for outstanding phosphate removal[J]. Chemical Communications, 2019, 55(14):2110-2113. doi: 10.1039/C8CC10314C
[117] Wilson I. Kaolin and halloysite deposits of China[J]. Clay Minerals, 2004, 39(1):1-15. doi: 10.1180/0009855043910116
[118] Wilson MJ. Clay mineralogical and related characteristics of geophagic materials[J]. Journal of Chemical Ecology, 2003, 29(7):1525-1547. doi: 10.1023/A:1024262411676
[119] Joussein E, Petit S, Churchman J, et al. Halloysite clay minerals - A review[J]. Clay Minerals, 2005, 40(4):383-426. doi: 10.1180/0009855054040180
[120] Raghdi A, Heraiz M, Sahnoune F, et al. Mullite-zirconia composites prepared from halloysite reaction sintered with boehmite and zirconia[J]. Applied Clay Science, 2017, 146:70-80. doi: 10.1016/j.clay.2017.05.037
[121] 赵亚婔.埃洛石纳米管及其改性产品在废水处理中的应用研究[D]郑州: 郑州大学, 2010.
http://cdmd.cnki.com.cn/Article/CDMD-10459-1011017727.htm [122] Ramadass K, Sathish CI, Johns A, et al. Characterization and hydrogen storage performance of halloysite nanotubes[J]. Journal of nanoscience and nanotechnology, 2019, 19(12):7892-7898. doi: 10.1166/jnn.2019.16751
[123] Liang W, Wu Y, Sun H, et al. Halloysite clay nanotubes based phase change material composites with excellent thermal stability for energy saving and storage[J]. RSC Advances, 2016, 6(24):19669-19675. doi: 10.1039/C5RA27964J
[124] Du P, Liu D, Yuan P, et al. Controlling the macroscopic liquid-like behaviour of halloysite-based solvent-free nanofluids via a facile core pretreatment[J]. Applied Clay Science, 2018, 156:126-133. doi: 10.1016/j.clay.2018.01.037
[125] Xu P, Zhou Y, Cheng H. Large-scale orientated self-assembled halloysite nanotubes membrane with nanofluidic ion transport properties[J]. Applied Clay Science, 2019, 180:105184. doi: 10.1016/j.clay.2019.105184
[126] Gao R, Meng Q, Li J, et al. Modified halloysite nanotubes reduce the toxic effects of zearalenone in gestating sows on growth and muscle development of their offsprings[J]. Journal of Animal Science and Biotechnology, 2016, 7:14. doi: 10.1186/s40104-016-0071-2
[127] Yin ST, Meng QW, Zhang BR, et al. Alleviation of zearalenone toxicity by modified halloysite nanotubes in the immune response of swine[J]. Food Additives and Contaminants Part A-Chemistry Analysis Control Exposure & Risk Assessment, 2015, 32(1):87-99. http://cn.bing.com/academic/profile?id=a87d71086d13b2d037e69eb1abba5d9f&encoded=0&v=paper_preview&mkt=zh-cn
[128] Tas C, Hendessi S, Baysal M, et al. Halloysite nanotubes/polyethylene nanocomposites for active food packaging materials with ethylene scavenging and gas barrier properties[J]. Food and Bioprocess Technology, 2017, 10(4):789-798. doi: 10.1007/s11947-017-1860-0
-