微波碱性焙烧—水溶含锗氧化锌烟尘回收锗

王万坤, 王福春, 梁杰. 微波碱性焙烧—水溶含锗氧化锌烟尘回收锗[J]. 矿产保护与利用, 2017, (6): 26-31. doi: 10.13779/j.cnki.issn1001-0076.2017.06.005
引用本文: 王万坤, 王福春, 梁杰. 微波碱性焙烧—水溶含锗氧化锌烟尘回收锗[J]. 矿产保护与利用, 2017, (6): 26-31. doi: 10.13779/j.cnki.issn1001-0076.2017.06.005
WANG Wankun, WANG Fuchun, LANG Jie. Recovery Germanium by Microwave Alkaline Roasting-water Dissolving from Zinc Oxide Dust Bearing Germanium[J]. Conservation and Utilization of Mineral Resources, 2017, (6): 26-31. doi: 10.13779/j.cnki.issn1001-0076.2017.06.005
Citation: WANG Wankun, WANG Fuchun, LANG Jie. Recovery Germanium by Microwave Alkaline Roasting-water Dissolving from Zinc Oxide Dust Bearing Germanium[J]. Conservation and Utilization of Mineral Resources, 2017, (6): 26-31. doi: 10.13779/j.cnki.issn1001-0076.2017.06.005

微波碱性焙烧—水溶含锗氧化锌烟尘回收锗

  • 基金项目:
    国家自然科学基金项目(51404081,51504073);贵州省自然科学基金项目(黔科合LH[2014]7373);贵州省教育厅自然科学基金项目(黔教科合KY[2015]433);贵州理工学院高层次人才启动基金项目(XJG20141104)
详细信息
    作者简介: 王万坤(1985-), 男, 博士, 副教授, 主要研究方向:有色金属冶金, E-mail:wangwankun@foxmail.com
    通讯作者: 王福春(1986-), 女, 博士, 副教授, 主要研究方向:有色金属冶金, E-mail:595407478@qq.com
  • 中图分类号: TF046.2

Recovery Germanium by Microwave Alkaline Roasting-water Dissolving from Zinc Oxide Dust Bearing Germanium

More Information
  • 提出了微波碱性焙烧—水溶含锗氧化锌烟尘的新工艺,研究了配碱比、熟化时间、微波焙烧温度、液固比、水溶温度等对锗浸出率的影响规律。结果表明:在配碱比1 g·g-1、熟化时间5 d、微波焙烧温度400 ℃、保温时间10 min、液固比5 mL/g和水溶温度70 ℃时,锗的最佳浸出率为91.15%,与现有的常规碱性焙烧含锗氧化锌烟尘工艺对比可知,碱性焙烧温度从950~1 100 ℃降低至400 ℃,碱性焙烧保温时间由1~4 h降低至10 min,锗浸出率由80.35%提高至91.15%。

  • 加载中
  • 图 1  含锗氧化锌烟尘浸出工艺流程

    Figure 1. 

    图 2  微波碱性焙烧—水溶工艺流程图

    Figure 2. 

    图 3  配碱比和锗浸出率的曲线

    Figure 3. 

    图 4  熟化时间对浸出率影响曲线

    Figure 4. 

    图 5  微波焙烧温度对锗浸出率的影响曲线

    Figure 5. 

    图 6  微波碱性焙烧保温时间与浸出率之间的关系曲线

    Figure 6. 

    图 7  液固比对浸出率的影响曲线

    Figure 7. 

    图 8  水溶温度对锗浸出率影响

    Figure 8. 

    图 9  ZnO烟尘(A)及微波碱性焙烧—水溶渣(B)的XRD图

    Figure 9. 

    表 1  含锗氧化锌烟尘原料的化学成分    /%

    Table 1.  Major chemical ingredients of zinc oxide dust bearing germanium

    元素 Zn Pb Cu As Cd Fe Sb Al Bi Ge Ca Ag Cl In K S
    含量 51.50 20.50 0.14 1.04 0.52 0.44 0.27 0.17 0.06 510 0.04 0.04 0.04 0.02 0.13 3.00
      注:Ge含量单位为g/t。
    下载: 导出CSV
  • [1]

    Depuydt Ben, Theuwis Antoon, Romandic Igor. Germanium: from the first application of czochralski crystal growth to large diameter dislocation-free wafers[J]. Materials Science in Semiconductor Processing, 2006, 9(4-5): 437-443. doi: 10.1016/j.mssp.2006.08.002

    [2]

    Thostenson E T, Chou T W. Microwave processing: fundamentals and applications[J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(9): 1055-1071. doi: 10.1016/S1359-835X(99)00020-2

    [3]

    Dutrizac J E, Chen T T, Longton R J. The mineralogical deportment of germanium in the clarksville electrolytic zinc plant of savage zinc inc[J]. Metallurgical and Materials Transactions B, 1996, 27(4): 567. doi: 10.1007/BF02915654

    [4]

    李琛. 韶冶密闭鼓风炉熔炼过程中锗铟的富集与综合回收[D]. 长沙: 中南大学, 2004.http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y672949

    [5]

    Zhang Libo, Guo Wenqian, Peng Jinhui, et al. Comparison of ultrasonic-assisted and regular leaching of germanium from by-product of zinc metallurgy[J]. Ultrasonics Sonochemistry, 2016, 31: 143-149. doi: 10.1016/j.ultsonch.2015.12.006

    [6]

    Nusen Sankum, Zhu Zhaowu, Chairuangsri Torranin, et al. Recovery of germanium from synthetic leach solution of zinc refinery residues by synergistic solvent extraction using lix 63 and ionquest 801[J]. Hydrometallurgy, 2015, 151:122-132. doi: 10.1016/j.hydromet.2014.11.016

    [7]

    Liu Fupeng, Liu Zhihong, Li Yuhu, et al. Recovery and separation of gallium(Ⅲ) and germanium(Ⅳ) from zinc refinery residues: Part Ⅰ: Leaching and iron(Ⅲ) Removal[J]. Hydrometallurgy, 2017, 171: 149-156. doi: 10.1016/j.hydromet.2017.05.009

    [8]

    Liu Fupeng, Liu Zhihong, Li Yuhu, et al. Extraction of gallium and germanium from zinc refinery residues by pressure acid leaching[J]. Hydrometallurgy, 2016, 164: 313-320. doi: 10.1016/j.hydromet.2016.06.006

    [9]

    Liang Duoqiang, Wang Jikun, Wang Yunhua. Difference in dissolution between germanium and zinc during the oxidative pressure leaching of sphalerite[J]. Hydrometallurgy, 2009, 95(1-2): 5-7. doi: 10.1016/j.hydromet.2008.03.005

    [10]

    王娜. 石煤矿提钒绿色工艺的基础研究[D]. 重庆: 重庆大学, 2010.http://cdmd.cnki.com.cn/article/cdmd-10611-2010216658.htm

    [11]

    彭金辉, 郭胜惠, 张世敏, 等.微波加热干燥钛精矿研究[J].昆明理工大学学报(理工版), 2004(4): 5-9. http://doi.wanfangdata.com.cn/10.3969/j.issn.1007-855X.2004.04.002

    [12]

    付润泽. 微波辅助磨细惠民铁矿实验研究[D]. 昆明: 昆明理工大学, 2011.http://cdmd.cnki.com.cn/Article/CDMD-10674-1012263253.htm

    [13]

    Ali A Y, Bradshaw S M. Quantifying damage around grain boundaries in microwave treated ores[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(11-12): 1566-1573. doi: 10.1016/j.cep.2009.09.001

    [14]

    Yang Kun, Li Shiwei, Zhang Libo, et al. Microwave roasting and leaching of an oxide-sulphide zinc ore[J]. Hydrometallurgy, 2016, 166: 243-251. doi: 10.1016/j.hydromet.2016.07.012

  • 加载中

(9)

(1)

计量
  • 文章访问数:  1171
  • PDF下载数:  45
  • 施引文献:  0
出版历程
收稿日期:  2017-09-11
刊出日期:  2017-12-25

目录