DETERMINATION OF THE PHYSICAL PROPERTY LOWER LIMIT OF TIGHT OIL RESERVOIR BY HIGH-TEMPERATURE AND HIGH-PRESSURE EXPERIMENT
-
摘要:
致密油储层的开采物性下限变得越来越低,并且逐渐接近成藏充注物性下限,因此对于致密油储层物性下限的精确确定变得极为重要.束缚水水膜厚度在确定储层物性下限中起到关键作用,其中束缚水表面积通过氮气吸附实验可以精确得到.束缚水水膜体积的得出方法很多,但也存在很多缺陷.通过对多种方法的调研,最后确定采用模拟地层压力和温度的岩电实验,结合阿尔奇公式得到束缚水饱和度,计算出束缚水水膜体积的方法,最后得出的束缚水膜厚度.此法可以很好地模拟地层环境,所得结果更加接近地层真实值,最后得出的束缚水水膜厚度更加准确.束缚水水膜得出以后,与孔喉半径平均值建立关系图确定孔喉半径平均值下限,然后运用统计学原理建立孔喉半径平均值与孔渗的关系图,最终确定致密油储层的孔隙度充注下限值和渗透率下限值.根据压汞曲线图确认此种测试方法所得物性下限结果准确.
Abstract:The physical property lower limit for mining of tight oil reservoir is becoming lower and lower, gradually approaching that of accumulation filling. Therefore, it is significantly important to accurately determine such lower limit. The bound water film thickness plays a key role in the determination, while the surface area of bound water can be obtained accurately by nitrogen adsorption experiment. There are quite a few defects despite many methods to determine the volume of bound water film. Through investigating various methods, the rock-electric experiment which simulates the formation pressure and temperature is finally adopted, combined with the Archie formula to calculate the saturability, then the volume and finally the thickness of bound water film. The method can well simulate the strata environment, with result closer to the true value, thus the obtained bound water film thickness is more accurate. The low limit of pore throat mean radius is determined by establishing its relation to the bound water film thickness. Then, with principle of statistics, the relation between the pore throat mean radius and permeability is set up to finally decide the low limit of porosity filling and permeability of tight oil reservoir. The results prove to be accurate according to the mercury injection curve.
-
-
表 1 氮气吸附试验比表面积变化表
Table 1. Specific surface area variations by nitrogen adsorption test
孔隙区间/nm 孔隙面积增量/(m2/g) 累积孔隙面积/(m2/g) 215.2~148.1 0.015 2.641 148.1~96.2 0.029 2.626 96.2~63.5 0.045 2.597 63.5~39.5 0.081 2.553 39.5~27.2 0.090 2.472 27.2~20.8 0.082 2.382 20.8~16.7 0.080 2.300 16.7~14.1 0.072 2.220 14.1~11.8 0.083 2.148 11.8~10.5 0.060 2.064 10.5~8.5 0.131 2.004 8.5~7.1 0.123 1.873 7.1~6.0 0.122 1.747 6.0~5.3 0.120 1.624 5.3~4.6 0.121 1.505 4.6~4.1 0.125 1.383 4.1~3.7 0.133 1.258 3.7~3.3 0.154 1.125 3.3~3.0 0.171 0.971 3.0~2.7 0.190 0.800 2.7~2.5 0.196 0.610 2.5~2.2 0.205 0.414 2.2~2.0 0.209 0.209 表 2 恒速压汞实验数据
Table 2. Data from constant-rate mercury injection experiment
样品号 孔隙半径平均值rt 喉道半径平均值rp 平均毛管半径rm 孔喉半径比平均值η 主流喉道半径Rm 最大连通喉道半径rMAX H26 156.670 0.371 0.288 442.946 0.186 0.563 H38 148.978 0.268 0.195 555.779 0.097 0.298 H47 153.468 0.427 0.276 654.277 0.149 0.364 H62 178.254 0.521 0.184 574.634 0.213 0.445 H53 165.325 0.368 0.346 558.465 0.146 0.554 H21 172.326 0.426 0.146 536.145 0.225 0.358 H32 156.321 0.375 0.493 431.662 0.216 0.549 H34 145.328 0.412 0.257 443.657 0.238 0.767 数据单位:μm. -
[1] 王社教, 蔚远江, 郭秋麟, 等.致密油资源评价新进展[J].石油学报, 2014, 35(6):1095-1105. http://d.old.wanfangdata.com.cn/Periodical/syxb201406007
[2] Cheng Y, Zhang C, Zhu L Q. A fractal irreducible water saturation model for capillary tubes and its application in tight gas reservoir[J]. Journal of Petroleum Science and Engineering, 2017, 159:731-739. doi: 10.1016/j.petrol.2017.09.079
[3] 王伟明, 卢双舫, 田伟超, 等.吸附水膜厚度确定致密油储层物性下限新方法——以辽河油田大民屯凹陷为例[J].石油与天然气地质, 2016, 37(1):135-140. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201601019
[4] 曹青, 赵靖舟, 刘新社, 等.鄂尔多斯盆地东部致密砂岩气成藏物性界限的确定[J].石油学报, 2013, 34(6):1040-1048. http://d.old.wanfangdata.com.cn/Periodical/syxb201306002
[5] 向阳, 向丹, 羊裔常, 等.致密砂岩气藏水驱动态采收率及水膜厚度研究[J].成都理工学院学报, 1999, 26(4):389-391. doi: 10.3969/j.issn.1671-9727.1999.04.013
[6] 张啸.徐家围子地区深层致密沙砾岩储层测井评价方法[D].大庆: 东北石油大学, 2013.
http://cdmd.cnki.com.cn/Article/CDMD-10220-1013290945.htm [7] 沈爱新, 王黎, 陈守军.油层低电阻率及阿尔奇公式中各参数的岩电实验研究[J].江汉石油学院学报, 2003(S1):24-25, 5. http://d.old.wanfangdata.com.cn/Periodical/jhsyxyxb2003z1012
[8] Lewicki J P, Ratel M, Morrell P, et al. The stability of polysiloxanes incorporating nano-scale physical property modifiers[J]. Science and Technology of Advanced Materials, 2008, 9(2). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_c2ccd553d89b45c7efffe47d2f49efc5
[9] 原海涵.阿尔奇公式中a、m与渗透率的关系——毛管理论在岩石电阻率研究中的应用[J].地球物理测井, 1990, 14(5):347-357, 6. http://www.cnki.com.cn/Article/CJFDTotal-CJJS199005010.htm
[10] Kwon M, Kang H, Ahn J H, et al. Comparison on physical property, dissolution and disintegration of four launched orally disintegration film (ODF) products for erectile dysfunction[J]. Journal of Pharmaceutical Investigation, 2014, 44(4). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a52eed4713187d5fc761865c475917fc
[11] 肖前华, 张尧, 杨正明, 等.中国典型致密油区低温氮气吸附实验[J].特种油气藏, 2015, 22(4):82-85, 155. doi: 10.3969/j.issn.1006-6535.2015.04.021
[12] 张先伟, 孔令伟.利用扫描电镜、压汞法、氮气吸附法评价近海黏土孔隙特征[J].岩土力学, 2013, 34(S2):134-142. http://d.old.wanfangdata.com.cn/Periodical/ytlx2013z2022
[13] 文浩.遗传模拟退火算法在阿尔奇公式参数估计中的应用[J].断块油气田, 2008, 15(1):105-107. http://d.old.wanfangdata.com.cn/Periodical/dkyqt200801034
[14] Hamada G M, Almajed A A, Okasha T M, et al. Uncertainty analysis of Archie's parameters determination techniques in carbonate reservoirs[J]. Journal of Petroleum Exploration and Production Technology, 2013, 3(1):498-502. http://cn.bing.com/academic/profile?id=ee0c31aabb43537cf1202beed61a4f01&encoded=0&v=paper_preview&mkt=zh-cn
[15] 孙建国.阿尔奇(Archie)公式:提出背景与早期争论[J].地球物理学进展, 2007, 22(2):472-486. doi: 10.3969/j.issn.1004-2903.2007.02.020
[16] 匡立春, 唐勇, 雷德文, 等.准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力[J].石油勘探与开发, 2012, 39(6):657-667. http://d.old.wanfangdata.com.cn/Periodical/syktykf201206003
[17] 梁狄刚, 冉隆辉, 戴弹申, 等.四川盆地中北部侏罗系大面积非常规石油勘探潜力的再认识[J].石油学报, 2011, 32(1):8-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201101002
[18] 周宗良, 张凡磊, 王怀忠, 等.低渗砂岩储层毛管孔道应力与孔隙水膜赋存状态探讨[J].新疆地质, 2017, 35(3):320-324. doi: 10.3969/j.issn.1000-8845.2017.03.016
[19] Zhang X W, Cao G S, Niu L J, et al. Determination of irreducible water saturation and its application in analysing water producing after fracturing[J]. Applied Mechanics and Materials, 2014, 3147(548):1120-1125. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4028/www.scientific.net/AMM.548-549.1881
[20] 王继平, 王文举, 刘平, 等.致密砂岩气藏束缚水饱和度变化特征研究[J].科学技术与工程, 2017, 17(16):56-60. doi: 10.3969/j.issn.1671-1815.2017.16.009
[21] 雷刚, 董平川, 蔡振忠, 等.致密砂岩气藏气水相对渗透率曲线[J].中南大学学报:自然科学版, 2016, 47(8):2701-2705. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201608022
[22] 崔景伟, 朱如凯, 吴松涛, 等.致密砂岩层内非均质性及含油下限——以鄂尔多斯盆地三叠系延长组长7段为例[J].石油学报, 2013, 34(5):877-882. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201305008
[23] 赵良孝.对阿尔奇公式中m值物理、地质意义的重新认识[J].国外测井技术, 2013(6):21-23, 3. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gwcjjs201306007
[24] Timmer A. Kontrollierte klinische Studien vor Archie Cochrane[J]. Zeitschrift fuer Evidenz, Fortbildung und Qualitaet im Gesundheitswesen, 2008, 102(8):895-906. http://cn.bing.com/academic/profile?id=396df6f33d1dc9a1842be68f769a8525&encoded=0&v=paper_preview&mkt=zh-cn
[25] 王社教, 蔚远江, 郭秋麟, 等.致密油资源评价新进展[J].石油学报, 2014, 35(6):1095-1105. http://d.old.wanfangdata.com.cn/Periodical/syxb201406007
[26] Cong C, Ma S Z, Li J H, et al. Study on physical property lower limit of effective reservoir of deep layer in Qingshui-Yuanyang area[J]. Advanced Materials Research, 2013(616-618):104-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4028/www.scientific.net/AMR.616-618.104
[27] Feng C, Shi Y J, Li J H, et al. A new empirical method for constructing capillary pressure curves from conventional logs in low-permeability sandstones[J]. Journal of Earth Science, 2017, 28(3):516-522. doi: 10.1007/s12583-016-0913-6
[28] 蒋裕强, 高阳, 徐厚伟, 等.基于启动压力梯度的亲水低渗透储层物性下限确定方法——以蜀南河包场地区须家河组气藏为例[J].油气地质与采收率, 2010, 17(5):57-60, 114-115. doi: 10.3969/j.issn.1009-9603.2010.05.015
-