Geochronology, geochemistry and tectonic setting of the Dianzhong Formation volcanic rocks in the Riduo area, Eastern Gangdese belt, Tibet
-
摘要:
林子宗群火山岩为古近纪岩浆活动的典型代表,记录了印度与欧亚大陆碰撞造山过程。以冈底斯带东段日多地区林子宗群典中组火山岩为研究对象,对其基性和中酸性火山岩进行岩石地球化学、锆石U-Pb年代学和Lu-Hf同位素研究。LA-ICP-MS锆石U-Pb测年结果表明,典中组玄武岩、安山质晶屑凝灰岩锆石U-Pb年龄分别为57.9±1.2 Ma和57.4±1.2 Ma。典中组火山岩为钙碱性-高钾钙碱性岩石,其中,基性火山岩表现为低SiO2(48.67%~49.34%)、富Al2O3(15.25%~18.59%)、MgO(3.76%~8.69%),轻稀土元素相对富集和正Eu异常(δEu=1.15~1.37)特征;中酸性火山岩具有高SiO2(54.92%~64.16%)、富Al2O3(15.85%~16.72%)、K2O(0.65%~2.14%),低MgO(1.34%~3.67%)的特征,轻稀土元素富集,呈现出弱的负Eu异常(δEu=0.77~0.92)。两者不同程度富集Rb、Ba、Sr等大离子亲石元素,亏损Nb、Ta、Ti等高场强元素,球粒陨石标准化稀土元素配分模式图均呈现出右倾、轻稀土元素富集型曲线。锆石Lu-Hf同位素结果显示,基性火山岩(玄武岩)εHf(t)值为4.86~8.97,中酸性火山岩(安山质晶屑凝灰岩)εHf(t)值为0.26~6.37。结合前人研究成果,认为西藏日多地区典中组火山岩形成于古新世印度-欧亚大陆碰撞对接的同碰撞阶段,基性火山岩主要源自消减板片流体交代上覆地幔楔部分熔融的产物,中酸性火山岩主要为新生地壳的部分熔融,上升过程中均受到不同程度地壳物质的混染。
Abstract:The Linzizong Group is a typical Paleogene volcanic assemblage in the Gangdise belt, which records the orogenic history of subduction and collision between India and Eurasia.Zircon U-Pb chronology and Lu-Hf isotope studies were conducted on the Dianzhong Formation basic and intermediate volcanic rocks at the bottom of the Linzizong Group in the Riduo region of the Eastern Gangdese belt.LA-ICP-MS zircon U-Pb dating results show that ages of the Dianzhong Formation basalt and andesite crystalline tuff are 57.9±1.2 Ma and 57.4±1.2 Ma respectively, indicating that they were formed in the Late Paleozoic.Geochemically, the volcanic rocks generally belong to high-K(calc-alkaline) series.The basic volcanic rocks have low SiO2(48.67%~49.34%), high Al2O3(15.25%~18.59%) and high MgO(3.76%~8.69%).They are characterized by LREE enrichment and positive Eu anomalies(δEu=1.15~1.37).The intermediate volcanic rocks have high SiO2(54.92%~64.16%), high Al2O3(15.85%~16.72%), high K2O(0.65%~2.14%) and low MgO(1.34%~3.67%).They are relatively enriched in LREE and weak negative Eu anomalies(δEu=0.77~0.92).Both volcanic rocks exhibit fractionated REE and rightward patterns, strong enrichment of LILE(Rb, Ba, Sr), and depletion of HFSE(Nb, Ta, Ti).The zircon εHf(t) values of the basic volcanic rocks range from 4.86 to 8.97, and the εHf(t) values of the intermediate volcanic rocks are from 0.26 to 6.37.Based on previous results, it is suggested that the Dianzhong Formation volcanic rocks in Riduo area were formed in the syn-collision tectonic setting of the collision between India and Eurasia.The basic volcanic rocks were mainly derived from the partial melting of overlying mantle wedge metasomatized by the fluids of subducting plate, while the intermediate volcanic rocks were originated from partial melting of the juvenile crust materials, both of which were influenced by the contamination of old crustal materials to various degrees.
-
-
表 1 日多地区典中组火山岩主量、微量和稀土元素分析结果
Table 1. Major, trace and rare earth element composition of the Dianzhong Formation volcanic rocks in the Riduo area
样品编号 D0758/1 D2844/2 D1016/1 D3040/1 D4998/3 D4998/5 D4998/9 岩石分类 基性火山岩 中酸性火山岩 岩石名称 玄武岩 玄武安山岩 安山质晶屑凝灰岩 英安岩 SiO2 49.34 48.67 54.92 58.34 61.28 64.16 62.37 Al2O3 18.59 15.25 16.62 16.72 16.05 16.01 15.85 TFe2O3 9.14 9.98 10.44 7.45 6.13 4.95 6.31 MgO 3.76 8.69 3.67 2.82 1.70 1.34 1.66 CaO 9.44 9.30 9.36 5.23 4.04 4.11 4.40 Na2O 2.46 2.42 2.67 4.07 3.42 3.56 3.28 K2O 2.14 0.65 0.30 2.08 2.82 2.92 2.51 P2O5 0.27 0.12 0.22 0.24 0.24 0.22 0.25 MnO 0.21 0.19 0.19 0.13 0.12 0.10 0.11 TiO2 0.76 1.07 1.18 0.88 0.75 0.70 0.74 烧失量 4.00 4.21 0.32 1.92 3.30 1.91 2.36 总计 100.11 100.55 99.89 99.88 99.85 99.98 99.84 Mg# 49 67 45 47 39 37 38 里特曼指数(σ) 2.7 1.3 0.7 2.4 2 1.9 1.7 Sr 795 299 426 507 488 445 527 Zr 105 73.3 148 277 185 226 156 Ba 516 229 139 413 505 471 541 Rb 43.0 13.4 10.0 59.0 73.2 89.3 60.6 Th 6.90 1.30 6.43 7.24 5.52 9.25 7.57 U 1.45 0.68 1.13 1.5 1.45 2.51 1.43 Nb 7.31 2.40 13.45 6.27 7.01 9.67 7.12 Hf 1.86 2.02 2.95 5.29 3.91 4.91 4.13 Ta 0.72 0.38 0.80 0.50 0.66 0.70 0.52 Y 20.1 26.5 28.2 23.8 24.8 28.8 22.1 La 20.3 6.6 20.7 26.3 24.9 26.7 22.8 Ce 41.6 15.4 42.1 53.8 57.6 60.2 47.7 Pr 4.61 2.20 4.58 6.27 6.07 6.65 5.39 Nd 18.8 11.0 19.2 24.3 24.1 26.4 21.4 Sm 4.10 3.64 4.25 4.75 4.92 5.48 4.47 Eu 1.45 1.55 1.24 1.45 1.43 1.38 1.18 Gd 3.61 3.31 4.50 4.85 4.93 5.53 4.41 Tb 0.56 0.70 0.72 0.72 0.74 0.85 0.66 Dy 2.96 4.03 4.35 4.19 4.40 4.99 3.89 Ho 0.67 0.96 0.88 0.87 0.91 1.06 0.82 Er 1.74 2.17 2.69 2.62 2.71 3.14 2.42 Tm 0.25 0.42 0.37 0.39 0.39 0.46 0.36 Yb 1.58 2.21 2.49 2.51 2.65 3.00 2.38 Lu 0.24 0.30 0.38 0.43 0.43 0.48 0.37 ∑REE 102 55 108 133 136 146 118 ∑LREE/∑HREE 7.83 2.87 5.62 7.05 6.93 6.50 6.72 (La/Yb)N 9.22 2.16 5.96 7.52 6.73 6.38 6.87 δEu 1.15 1.37 0.87 0.92 0.89 0.77 0.81 注:Mg#=100×Mg2+/(Mg2++Fe2+);里特曼指数(σ)=[ω(K2O+Na2O)]2/[ω(SiO2-43)],主量元素含量单位为%,微量和稀土元素含量单位为10-6 表 2 日多地区典中组火山岩LA-ICP-MS锆石U-Th-Pb同位素分析结果
Table 2. LA-ICP-MS U-Th-Pb isotopic data of zircons from the Dianzhong Formation volcanic rocks in the Riduo area
测点 含量/10-6 Th/U 同位素比值 年龄值/Ma Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ D0758/1玄武岩 2 14.0 404 307 1.31 0.0471 0.0030 0.0558 0.0037 0.00857 0.00019 53.8 140.7 55.0 3.4 55.0 1.2 3 7.11 181 114 1.59 0.0475 0.0034 0.0630 0.0050 0.00954 0.00028 72.3 162.9 62.1 4.8 61.2 1.7 5 10.4 298 172 1.73 0.0463 0.0030 0.0560 0.0037 0.00885 0.00023 9.4 144.4 55.4 3.4 56.8 1.4 7 11.5 306 183 1.67 0.0499 0.0029 0.0653 0.0041 0.00950 0.00021 190.8 134.2 64.3 3.9 61.0 1.4 8 24.1 639 298 2.15 0.0475 0.0021 0.0600 0.0027 0.00918 0.00013 76.0 113.0 59.2 2.6 58.9 0.8 9 5.77 151 105 1.44 0.0515 0.0051 0.0599 0.0060 0.00857 0.00020 261.2 229.6 59.1 5.7 55.0 1.3 10 10.7 302 199 1.52 0.0521 0.0037 0.0628 0.0044 0.00890 0.00020 300.1 167.6 61.8 4.2 57.1 1.3 11 14.2 374 173 2.16 0.0488 0.0061 0.0580 0.0075 0.00865 0.00026 139.0 270.3 57.2 7.2 55.5 1.7 12 26.0 603 739 0.82 0.0494 0.0017 0.0656 0.0033 0.00964 0.00039 164.9 88.0 64.5 3.2 61.9 2.5 14 6.76 197 98 2.01 0.0468 0.0043 0.0575 0.0053 0.00890 0.00021 39.0 216.6 56.8 5.1 57.1 1.3 15 6.87 178 117 1.52 0.0477 0.0035 0.0626 0.0049 0.00942 0.00022 87.1 162.9 61.6 4.7 60.4 1.4 16 6.55 186 127 1.47 0.0505 0.0049 0.0582 0.0051 0.00859 0.00023 216.7 211.1 57.4 4.9 55.2 1.5 18 13.6 376 218 1.72 0.0479 0.0042 0.0596 0.0060 0.00891 0.00021 100.1 187.0 58.8 5.8 57.2 1.4 20 14.8 372 229 1.62 0.0488 0.0022 0.0633 0.0032 0.00946 0.00025 139.0 105.5 62.3 3.1 60.7 1.6 23 5.57 142 102 1.40 0.0499 0.0040 0.0642 0.0053 0.00935 0.00026 190.8 177.8 63.2 5.1 60.0 1.7 D2851/1安山质晶屑凝灰岩 1 13.6 87.9 75.7 1.16 0.0497 0.0072 0.0601 0.0090 0.00882 0.00025 189.0 298.1 59.3 8.6 56.6 1.6 4 24.1 187 260 0.72 0.0496 0.0024 0.0669 0.0039 0.00967 0.00021 172.3 116.7 65.7 3.7 62.1 1.3 5 37.0 307 417 0.74 0.0504 0.0020 0.0676 0.0039 0.00953 0.00027 216.7 88.9 66.4 3.7 61.1 1.7 8 23.1 206 259 0.79 0.0478 0.0018 0.0604 0.0023 0.00923 0.00017 100.1 -112.0 59.5 2.2 59.2 1.1 9 28.0 290 276 1.05 0.0491 0.0023 0.0616 0.0033 0.00912 0.00023 153.8 109.2 60.7 3.1 58.5 1.4 12 8.46 79.1 89.0 0.89 0.0529 0.0037 0.0650 0.0046 0.00914 0.00021 327.8 156.5 64.0 4.4 58.7 1.4 14 28.0 257 350 0.73 0.0512 0.0022 0.0611 0.0027 0.00866 0.00016 250.1 98.1 60.2 2.6 55.6 1.0 15 32.5 295 322 0.92 0.0496 0.0024 0.0623 0.0037 0.00901 0.00022 189.0 114.8 61.3 3.6 57.8 1.4 16 36.3 297 410 0.72 0.0492 0.0027 0.0593 0.0032 0.00875 0.00013 166.8 123.1 58.5 3.0 56.2 0.9 17 67.9 613 767 0.80 0.0484 0.0019 0.0610 0.0033 0.00900 0.00020 120.5 88.0 60.1 3.2 57.8 1.3 19 15.6 119 158 0.75 0.0482 0.0028 0.0567 0.0036 0.00848 0.00016 109.4 129.6 56.0 3.4 54.4 1.0 20 52.4 525 533 0.99 0.0512 0.0019 0.0685 0.0042 0.00962 0.00039 250.1 89.8 67.3 4.0 61.7 2.5 21 23.6 289 187 1.55 0.0494 0.0032 0.0595 0.0044 0.00874 0.00019 164.9 151.8 58.7 4.2 56.1 1.2 22 21.5 163 244 0.67 0.0513 0.0031 0.0576 0.0033 0.00826 0.00018 253.8 138.9 56.9 3.2 53.0 1.1 23 43.9 444 456 0.97 0.0520 0.0027 0.0660 0.0046 0.00927 0.00037 283.4 118.5 64.9 4.4 59.5 2.4 27 19.6 159 236 0.68 0.0520 0.0030 0.0639 0.0036 0.00898 0.00019 283.4 131.5 62.9 3.5 57.6 1.2 28 63.6 581 664 0.88 0.0480 0.0014 0.0626 0.0023 0.00938 0.00015 98.2 70.4 61.6 2.2 60.2 1.0 30 24.7 278 204 1.37 0.0506 0.0032 0.0624 0.0044 0.00907 0.00030 220.4 141.6 61.5 4.2 58.2 1.9 表 3 日多地区典中组火山岩锆石Lu-Hf同位素分析结果
Table 3. Lu-Hf isotopic data of zircons from the Dianzhong Formation volcanic rocks in the Riduo area
测点编号 t/Ma 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Hf/177Hf 2σ εHf(0) εHf(t) tDM1/Ma tDM2/Ma D0758/1玄武岩 3 61.2 0.078482 0.000488 0.003121 0.000009 0.282994 0.000030 7.74 8.96 392 558 7 61.0 0.068604 0.000780 0.002834 0.000025 0.282968 0.000028 6.81 8.03 429 618 8 58.9 0.085772 0.001875 0.003356 0.000059 0.282935 0.000026 5.64 6.80 485 695 9 55.0 0.048382 0.000772 0.002026 0.000030 0.282896 0.000026 4.31 5.45 522 778 11 55.5 0.062427 0.000684 0.002425 0.000024 0.282996 0.000023 7.84 8.97 381 553 12 61.9 0.117556 0.005751 0.004568 0.000219 0.282994 0.000022 7.66 8.83 413 567 14 57.1 0.052639 0.001068 0.002079 0.000037 0.282950 0.000020 6.23 7.40 444 655 15 60.4 0.078384 0.000460 0.003189 0.000016 0.282946 0.000028 6.02 7.21 467 669 16 55.2 0.062395 0.001212 0.002504 0.000052 0.282949 0.000029 6.17 7.29 451 661 18 57.2 0.058012 0.001090 0.002296 0.000038 0.282907 0.000027 4.70 5.87 510 753 20 60.7 0.073338 0.000904 0.002985 0.000033 0.282879 0.000027 3.65 4.86 564 820 23 60.0 0.044750 0.001483 0.001842 0.000057 0.282951 0.000028 6.26 7.50 440 651 D2851/2安山质晶屑凝灰岩 1 56.6 0.046272 0.001210 0.001941 0.000049 0.282858 0.000025 2.98 4.15 576 862 4 62.1 0.070582 0.001031 0.002887 0.000034 0.282824 0.000023 1.73 2.97 644 942 8 59.2 0.055712 0.000239 0.002192 0.000009 0.282866 0.000021 3.23 4.45 569 845 9 58.5 0.050771 0.000300 0.002027 0.000008 0.282830 0.000020 1.96 3.16 619 927 12 58.7 0.034924 0.000499 0.001389 0.000018 0.282822 0.000018 1.70 2.93 619 942 15 57.8 0.078208 0.000511 0.003208 0.000013 0.282923 0.000028 5.23 6.37 501 721 16 56.2 0.079574 0.000772 0.003205 0.000017 0.282814 0.000029 1.36 2.48 665 969 17 57.8 0.100605 0.001505 0.003989 0.000046 0.282832 0.000027 1.97 3.09 654 931 19 54.4 0.071036 0.000351 0.003005 0.000009 0.282752 0.000030 -0.83 0.26 754 1109 20 61.7 0.098993 0.000930 0.003906 0.000029 0.282816 0.000030 1.38 2.58 678 966 21 56.1 0.083099 0.002810 0.003230 0.000113 0.282764 0.000028 -0.39 0.72 740 1080 22 53.0 0.069312 0.001323 0.002846 0.000049 0.282787 0.000029 0.42 1.48 698 1030 23 59.5 0.074525 0.000991 0.002934 0.000029 0.282785 0.000029 0.35 1.53 703 1031 27 57.6 0.075913 0.001345 0.002986 0.000047 0.282868 0.000027 3.30 4.45 579 844 28 60.2 0.097575 0.001446 0.003906 0.000039 0.282859 0.000027 2.92 4.09 611 869 30 58.2 0.062287 0.000458 0.002584 0.000013 0.282829 0.000027 1.90 3.08 631 932 注:εHf(t) = 10, 000 × {[(176Hf/177Hf)s-(176Lu/177Hf)s × (eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR, 0 × (eλt-1)]-1}, tDM1 = (1/λ) ×ln{1+[(176Hf/177Hf)s-(176Hf/177Hf)DM]/[(176Lu/177Hf)s-(176Lu/177Hf)DM], tDM2 = t + (1/λ) × ln{1+[(176Hf/177Hf)s, t-(176Hf/177Hf)DM, t]/[(176Lu/177Hf)c-(176Lu/177Hf)DM]}。(176Hf/177Hf)s, (176Lu/177Hf)s为样品测量值, (176Hf/177Hf)CHUR, 0 = 0.282772, (176Lu/177Hf)CHUR, 0 = 0.0332, (176Hf/177Hf)DM = 0.28325, (176Lu/177Hf)DM = 0.0384, (176Lu/177Hf)c = 0.015, λ = 1.867 × 10-11/a, t为锆石结晶年龄 表 4 冈底斯带典中组火山岩形成时代
Table 4. Formation age of the Dianzhong Formation volcanic rocks in the Gangdise belt
位置 采样地点 岩性 年龄/Ma 测试方法 数据来源 冈底斯东段 南木林 英安岩、安山岩 60.6~64.4 Ar-Ar [34] 林周盆地 安山岩 65~57 Ar-Ar [35] 林周盆地 安山岩 60.6~64.4 Ar-Ar [14] 林周盆地 流纹岩 62.6~68.7 U-Pb [36] 林周盆地 辉石安山岩 62~64 U-Pb [22] 林周盆地 辉石安山岩 66.0 U-Pb [21] 林周盆地 黑云母安山岩 65.8 U-Pb [21] 新嘎果地区 流纹质晶屑凝灰岩 70.9 U-Pb [37] 日多地区 安山质晶屑凝灰岩、玄武岩 57.4~57.9 U-Pb 本文 冈底斯中段 朱诺地区 流纹质晶屑凝灰岩 64.8 U-Pb [38] 措麦地区 凝灰岩 65~70 U-Pb [39] 桑桑地区 凝灰岩 69.9 U-Pb [18] 申扎地区 78.5~83.4 K-Ar ② 查孜地区 流纹质晶屑凝灰岩 70.7 U-Pb [40] 冈底斯西段 狮泉河 流纹岩 64.5 U-Pb [41] 石巴罗地区 英安岩、火山角砾岩 77.1~79.2 U-Pb ③ 69.7~75.5 Ar-Ar 塔若错和仁多地区 英安岩和流纹岩 63.9~82.2 K-Ar ④ -
[1] Lee H Y, Chung S L, Ji J, et al. Geochemical and Sr-Nd isotopic constraints on the genesis of the Cenozoic Linzizong volcanic successions, southern Tibet[J]. Journal of Asian Earth Sciences, 2012, 53(2): 96-114.
[2] 黄映聪, 杨德明, 郑常青, 等. 西藏林周县扎雪地区林子宗群帕那组火山岩的地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2005, 35(5): 576-580. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200505004.htm
[3] Lee H Y, Chung S L, Lo C H, et al. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record[J]. Tec-tonophysics, 2009, 477(1): 20-35.
[4] Mo X X, Hou Z Q, Niu Y L, et al. antle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet[J]. Lithos, 2007, 96(1): 225-242. http://www.sciencedirect.com/science/article/pii/S0024493706002933
[5] Mo X X, Niu Y L, Dong G C, et al. Contribution of syncollisional felsic magmatism to continental crust growth: a case study of the Paleogene Linzizong volcanic succession in southern Tibet[J]. Chemical Geology, 2008, 250(1): 49-67. http://www.sciencedirect.com/science/article/pii/S0009254108000582
[6] Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane: record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301(1): 241-255. http://www.sciencedirect.com/science/article/pii/S0012821X10007004
[7] 莫宣学, 赵志丹, 邓晋福. 印度-亚洲大陆主碰撞过程的火山作用响应[J]. 地学前缘, 2003, 10(3): 135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013
[8] 莫宣学, 董国臣, 赵志丹, 等. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J]. 高校地质学报, 2005, 11(3): 281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001
[9] 潘桂棠, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2006, 22(3): 521-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm
[10] 侯增谦, 杨竹森, 徐文艺, 等. 青藏高原碰撞造山带: Ⅰ. 主碰撞造山成矿作用[J]. 矿床地质, 2006, 25(4): 337-358. doi: 10.3969/j.issn.0258-7106.2006.04.001
[11] 张博川, 范建军, 罗安波, 等. 拉萨地块东部米拉山地区中新世地层的特征及构造意义[J]. 地球科学, 2019, 44(7): 2392-2407. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201907015.htm
[12] 于云鹏, 解超明, 王伟, 等. 青藏高原陆相火山岩区填图新进展——以松多地区新生代火山机构为例[J]. 地质通报, 2018, 37(8): 129-135. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20180814&flag=1
[13] 刘安琳, 朱弟成, 王青, 等. 藏南米拉山地区林子宗火山岩LA-ICP-MS锆石U-Pb年龄和起源[J]. 地质通报, 2015, 34(5): 826-833. doi: 10.3969/j.issn.1671-2552.2015.05.003 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20150503&flag=1
[14] 周肃, 莫宣学, 董国臣, 等. 西藏林周盆地林子宗火山岩40Ar/39Ar年代格架[J]. 科学通报, 2004, 49(20): 2095-2103. doi: 10.3321/j.issn:0023-074X.2004.20.014
[15] Ran M L, Kang Z Q, Xu J F, et al. Evolution of the northward subduction of the Neo-Tethys: Implications of geochemistry of Cretaceous arc volcanics in Qinghai-Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 515: 83-94. doi: 10.1016/j.palaeo.2017.12.043
[16] 董树文, 武红岭, 刘晓春, 等. 陆-陆点碰撞与超高压变质作用[J]. 地质学报, 2002, 76(2): 163-172. doi: 10.3321/j.issn:0001-5717.2002.02.003
[17] 韦天伟, 杨锋, 康志强, 等. 西藏拉萨地块东部尼木-加查地区林子宗群火山岩年代学, 地球化学特征及其构造意义[J]. 现代地质, 2019, 33(4): 715-726. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201904004.htm
[18] 谢冰晶, 周肃, 谢国刚, 等. 西藏冈底斯中段孔隆至丁仁勒地区林子宗群火山岩锆石SHRIMP年龄和地球化学特征的区域对比[J]. 岩石学报, 2013, 29(11): 3803-3814. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311013.htm
[19] 张运昌, 陈彦, 杨青, 等. 西藏冈底斯带中部南木林地区林子宗群火山岩锆石U-Pb年龄和地球化学特征[J]. 地质通报, 2019, 38(5): 719-732. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20190503&flag=1
[20] 周征宇, 廖宗廷. 印度板块向欧亚板块俯冲碰撞的新模式及其对青藏高原构造演化的影响[J]. 沉积与特提斯地质, 2005, 25(4): 826-833. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200504003.htm
[21] 陈贝贝, 丁林, 许强, 等. 西藏林周盆地林子宗群火山岩的精细年代框架[J]. 第四纪研究, 2016, 36(5): 1037-1054.
[22] Huang W T, Dupont-Nivet G, Lippert P C, et al. What was the Paleogene latitude of the Lhasa terrane? A reassessment of the geochronology and paleomagnetism of Linzizong volcanic rocks(Linzhou Basin, Tibet)[J]. Tectonics, 2015, 34: 594-622. doi: 10.1002/2014TC003787
[23] 王立全, 潘桂棠, 张万平, 等. 青藏高原及邻区大地构造图及说明书(1: 1 500 000)[M]. 北京: 地质出版社, 2013.
[24] 董宇超, 解超明, 于云鹏, 等. 西藏工布江达县龙崖松多榴辉岩的发现及意义[J]. 地质通报, 2018, 37(8): 1464-1471. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20180810&flag=1
[25] 董宇超, 解超明, 范建军, 等. 西藏松多地区榴辉岩的原岩属性探讨及其地质意义[J]. 地球科学, 2019, 44(7): 2234-2248. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201907004.htm
[26] 解超明, 李才, 李光明, 等. 西藏松多古特提斯洋研究进展与存在问题[J]. 沉积与特提斯地质, 2020, 40(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD202002002.htm
[27] Boynton W. Cosmochemistry of the Rare Earth Elements: Meteorite Studies[J]. Dev. Geochem., 1984, 2: 63-114. http://www.sciencedirect.com/science/article/pii/B9780444421487500083
[28] Sun S S, McDonough W F. Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes[J]. Geological Society of London Special Publication, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[29] Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser ablation quadrupole and multiple collector ICP-MS[J]. Chemical Geology, 2008, 247: 100-117. doi: 10.1016/j.chemgeo.2007.10.003
[30] Rubatto D. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 2002, 184(1): 123-138. http://www.researchgate.net/profile/Daniela_Rubatto/publication/223526967_Rubatto_D._Zircon_trace_element_geochemistry_partitioning_with_garnet_and_the_link_between_U-Pb_ages_and_metamorphism._Chem._Geol._184_123138/links/0a85e537d3da6b9f3d000000.pdf
[31] Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3): 237-269. http://www.sciencedirect.com/science/article/pii/S0024493702000828
[32] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
[33] 莫宣学. 青藏高原岩浆成因研究: 成果与展望[J]. 地质通报, 2009, 28(12): 1694-1703. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20091201&flag=1
[34] 莫宣学, 赵志丹, Depaolo D J, 等. 青藏高原拉萨地块碰撞-后碰撞岩浆作用的三种类型及其对大陆俯冲和成矿作用的启示: Sr-Nd同位素证据[J]. 岩石学报, 2006, 22(4): 795-803. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200604004.htm
[35] 董国臣. 西藏林周盆地林子宗火山岩及其所含的印度-欧亚大陆碰撞信息研究[D]. 中国地质大学(北京) 博士学位论文, 2002.
[36] He S D, Kapp P, Decelles P G, et al. Cretaceous-Tertiary geology of the Gangdese Arc in the Linzhou area, southern Tibet[J]. Tectonophysics, 2007, 433: 13-37.
[37] 唐攀, 唐菊兴, 郑文宝, 等. 西藏新嘎果地区典中组火山岩年代学、Hf同位素及地球化学特征[J]. 岩石矿物学杂志, 2018, 37(1): 47-60. doi: 10.3969/j.issn.1000-6524.2018.01.005
[38] 梁银平, 朱杰, 次邛, 等. 青藏高原冈底斯带中部朱诺地区林子宗群火山岩锆石U-Pb年龄和地球化学特征[J]. 地球科学(中国地质大学学报), 2010, 35(2): 211-223. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201002004.htm
[39] 于枫, 李志国, 赵志丹, 等. 西藏冈底斯带中西部措麦地区林子宗火山岩地球化学特征及意义[J]. 岩石学报, 2010, 26(7): 2217-2225. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201007023.htm
[40] 李勇, 张士贞, 李奋其, 等. 拉萨地块中段查孜地区典中组火山岩锆石U-Pb年龄及地质意义[J]. 地球科学, 2018, 43(8): 2755-2766. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201808017.htm
[41] 王乔林. 冈底斯西部林子宗群火山岩的地球化学特征及锆石年代学研究[D]. 中国地质大学(北京) 硕士学位论文, 2011.
[42] Ayers J. Trace element modeling of aqueous fluid-peridotite interaction in the mantle wedge of subduction zones[J]. Contributions to Mineralogy and Petrology, 1998, 132(4): 390-404. doi: 10.1007/s004100050431
[43] Regelous M, Collerson K, Ewart A, et al. Trace element transport rates in subduction zones: Evidence from Th, Sr and Pb isotope data for Tonga-Kermadec arc lavas[J]. Earth and Planetary Science Letters, 1997, 150: 291-302. doi: 10.1016/S0012-821X(97)00107-6
[44] 徐义刚, 王强, 唐功建, 等. 弧玄武岩的成因: 进展与问题[J]. 中国科学: 地球科学, 2020, 50(12): 1818-1844. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202012009.htm
[45] Mohr P A. Crustal Contamination in mafic Sheets: A summary[C]//Halls H C, Fahrig W F. Mafic Dyke Swarms, Special Publication-Geological Association of Canada, 1987: 75-80.
[46] Wilson M. Igneous petrogenesis[M]. London: Unwin Hyman, 1989.
[47] Bacon C R, Druitt T H. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon[J]. Contrib. Mineral. Petrol., 1988, 98: 224-256. doi: 10.1007/BF00402114
[48] Guffanti M, Clynne M, Muffler L, et al. Thermal and mass implications of magmatic evolution in the Lassen volcanic region, California, and constraints on basalt influx to the lower crust[J]. Journal of Geophysical Research, 1996, 101: 3003-3013. doi: 10.1029/95JB03463
[49] Roberts M P, Clemens J D. Origin of high-potassium, calc-alkaline, Ⅰ-type granitoids[J]. Geology, 1993, 21: 825. doi: 10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2
[50] 张立雪, 王青, 朱弟成, 等. 拉萨地体锆石Hf同位素填图: 对地壳性质和成矿潜力的约束[J]. 岩石学报, 2013, 29(11): 3681-3688. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311003.htm
[51] 朱弟成, 赵志丹, 牛耀龄, 等. 拉萨地体的起源和古生代构造演化[J]. 高校地质学报, 2012, 18(1): 1-15. doi: 10.3969/j.issn.1006-7493.2012.01.001
[52] Ding L, Kapp P, Wan X Q, et al. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet[J]. Tectonics, 2005, 24(3): TC3001.
[53] Yin A, Harrison T M. Geological evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2003, 28(1): 211-280.
[54] Chen J S, Huang B C, Sun L S, et al. New constraints to the onset of the India-Asia collision: paleomagnetic reconnaissance on the Linzizong Group in the Lhasa Block, China[J]. Tectonophysics, 2010, 489: 189-209. doi: 10.1016/j.tecto.2010.04.024
[55] 李皓扬, 钟孙霖, 王彦斌, 等. 藏南林周盆地林子宗火山岩的时代、成因及其地质意义: 锆石U-Pb年龄和Hf同位素证据[J]. 岩石学报, 2007, 23(2): 493-500. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702026.htm
① 周斌,韩奎,潘亮,等.西藏日多地区1:5万区域地质调查成果报告.陕西省地质调查中心,2019.
② 吉林大学地质调查院.中华人民共和国1:25万申扎幅区域地质调查报告.吉林大学档案馆,2002.
③ 四川省地质调查院.中华人民共和国1:25万措勤县幅区域地质调查报告.成都理工大学档案馆,2002.
④ 成都理工大学地质调查院.中华人民共和国1:5万措勤县南嘎仁错东部地区区域地质矿产调查报告.成都理工大学档案馆,2010.
-