Typical structural geology and groundwater dynamics in red beds basins of Ganjiang River Basin, South China
-
摘要:
中国陆相红层广泛分布,占陆地总面积的9.5%,大量城镇居民和农业种植区分布于不同区域的陆相红层盆地内,红层地区地下水资源普遍紧缺,干旱日趋严重,形势严峻,成为扶贫攻坚的重点。中国南方以赣江流域红层盆地为典型代表,红层主要分布于NE向展布的断陷盆地,其形成演化、空间分布和构造样式受NE向区域伸展断裂构造控制,红层内构造以NE向伸展断层和局部平缓褶皱为主要变形特征。盆地内红色砂砾岩层极差的分选性和完好的铁质胶结,使其具有低孔隙和低渗透特征,且厚度大分布广,成为红层盆地地下水贫瘠和补给效率低的主要原因。盆地内断裂构造及其伴生节理裂隙构成地下水的主要储存空间,也为地表水和地下水的交换提供运移和渗透通道。地下水的补给、红层内膏盐矿物及重金属元素的淋滤富集、地表农业和工业废水及污染物的下渗均受盆内断裂构造的控制。地下水的空间分布、资源量、补给效率和水质强烈受控于盆内局部变形构造,具有显著的非均一性。红层盆地内断裂构造的发育、活动性质及其伴生裂隙网络研究对地下水资源评价、动态监测和高效利用具有重要的科学指导意义。
Abstract:Continental red-beds are widely distributed in China, accounting for 9.5% of the total land area.A large number of urban residents and agricultural planting areas are located in different continental red-bed basins.The groundwater resources in the red-beds area are generally in short supply, and the drought is becoming more and more serious, which has become the focus of poverty alleviation.The red-beds basins in Ganjiang River Basin are typical examples in South China.Red-beds layers are mainly distributed in NE trending fault basins.Their formation and evolution, spatial distribution and structural style are controlled by NE trending regional extensional faults.The deformation in red-beds basins are characterized by NE trending extensional faulting and local gentle folding.The poor separability and complete iron cementation of the thick red glutenite in the basin make them characterized by low porosity and low permeability, which are the main reasons for the lack of groundwater and low recharge efficiency in the red-beds basin.The faults and associated fractures in the basin provide the main storage space for groundwater and also provide migration and seepage channels for the exchange of surface water and groundwater.The recharge of groundwater, the leaching and enrichment of gypsum minerals and heavy metals in red-beds, and the infiltration of agricultural and industrial wastewater and pollutants are all controlled by the faults in the basin.The spatial distribution, resource quantity, recharge efficiency and quality of groundwater are strongly controlled by the local deformed structures in the basin and are characterized by significant heterogeneity.The development, activity and associated fracture network of faults in red-beds basin have important significance for groundwater resource evaluation, dynamic monitoring and efficient utilization.
-
Key words:
- Ganjiang River Basin /
- red-beds basin /
- groundwater /
- faults /
- countermeasures
-
-
[1] Berner R A.Goethite stability and the origin of red beds[J].Geochimica et Cosmochimica Acta, 1969, 33(2):267-273. doi: 10.1016/0016-7037(69)90143-4
[2] Van Houten F B.Origin of red beds:A review[J].Earth and Planetary Sci.Ann.Rev., 1973, 1:39-61. doi: 10.1146/annurev.ea.01.050173.000351
[3] 夏祖葆, 刘宝珺.红层问题[J].岩相古地理, 1990, (3):47-61. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD199003005.htm
[4] 李廷勇, 王建力.中国的红层及发育的地貌类型[J].四川师范大学学报(自然科学版), 2002, (4):427-431. doi: 10.3969/j.issn.1001-8395.2002.04.029
[5] 彭华, 吴志才.关于红层特点及分布规律的初步探讨[J].中山大学学报(自然科学版), 2003, (5):109-113. doi: 10.3321/j.issn:0529-6579.2003.05.029
[6] 程强, 寇小兵, 黄绍槟, 等.中国红层的分布及地质环境特征[J].工程地质学报, 2004, (1):34-40. doi: 10.3969/j.issn.1004-9665.2004.01.007
[7] 郭永春, 谢强, 文江泉.我国红层分布特征及主要工程地质问题[J].水文地质工程地质, 2007, (6):67-71. doi: 10.3969/j.issn.1000-3665.2007.06.016
[8] Yan L, Peng H, Zhang S, et al.The spatial patterns of Red Beds and Danxia Landforms:Implication for the formation factors, China[J].Scientific Reports, 2019, 9(1):1-10. http://www.nature.com/articles/s41598-018-37238-7
[9] 武选民, 文冬光, 郭建强, 等.西部严重缺水地区人畜饮用地下水勘查示范工程[M].北京:中国大地出版社, 2006.
[10] 周绪纶.四川盆地红层浅层风化带裂隙水及其合理开发利用[J].四川地质学报, 2007, (3):184-191. doi: 10.3969/j.issn.1006-0995.2007.03.008
[11] 王宇.红层地下水勘查开发的理论及方法[M].北京:地质出版社, 2008.
[12] 王宇.红层地下水富集规律[J].地质灾害与环境保护, 2010, 21(2):53-57. doi: 10.3969/j.issn.1006-4362.2010.02.012
[13] 吕玉香, 罗顺清, 樊新庆, 等.重庆市红层承压水分布特征与富集规律研究[J].中国农村水利水电, 2010, (9):26-29, 38. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201009010.htm
[14] 成六三.红层缺水区地下水资源开发利用研究进展及其现状[J].太原师范学院学报(自然科学版), 2019, 18(2):84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-SJYX201902021.htm
[15] 张超岳.红层地下水形成条件及找水方向[J].地下水, 1987, (1):47-49, 53. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU198701014.htm
[16] 朱春林, 李智毅, 饶春富, 等.滇中红层浅层地下水的特征和农村供水示范工程的建立[J].地质通报, 2010, 29(4):610-615. doi: 10.3969/j.issn.1671-2552.2010.04.017 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20100417&flag=1
[17] 温金梅, 刘大刚, 樊新庆, 等.重庆市红层地区缺水现状及其对策分析[J].中国农村水利水电, 2011, (8):56-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201108018.htm
[18] 章旭, 李晓, 周梅竹, 等.成都市红层水井运行现状调查及水质评价[J].地下水, 2014, 36(6):159-161. doi: 10.3969/j.issn.1004-1184.2014.06.058
[19] 骆银辉, 张成亚, 饶春富, 等.云南红层地下水贮存特征与开发利用途径[J].勘察科学技术, 2006, (2):46-49. doi: 10.3969/j.issn.1001-3946.2006.02.013
[20] 张福存, 鄢毅, 刘安云, 等.西南红层浅层地下水特征及其开发利用模式[J].水文地质工程地质, 2008, (3):53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200803012.htm
[21] 陈启国, 郑万模, 常小军.典型红层地区地下水的补、径、排关系探讨——以重庆市荣昌县为例[J].沉积与特提斯地质, 2011, 31(3):107-112. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201103018.htm
[22] 温金梅, 樊新庆, 吕玉香, 等.重庆红层浅层地下水铁锰去除方法的研究[J].中国农村水利水电, 2010, (7):56-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201007019.htm
[23] 曹霞.重庆市南川区红层找水工程水质检测分析[J].中国卫生检验杂志, 2013, 23(16):3268-3269. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ201316036.htm
[24] Bense V F, Gleeson T, Loveless S E, et al.Fault zone hydrogeology[J].Earth-Science Reviews, 2013, 127:171-92.
[25] 王新峰, 宋绵, 龚磊, 等.赣南缺水区地下水赋存特征及典型蓄水构造模式解析——以兴国县为例[J].地球学报, 2018, 39(5):573-579. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201805008.htm
[26] 方捷, 曾勇, 刘一, 等."地质调查+"支撑服务脱贫攻坚模式探索与实践——以赣南苏区为例[J].地球学报, 2018, 39(5):559-564.
[27] 廖瑞君, 衷存堤, 肖晓林.江西陆相红盆岩石地层划分与对比[J].江西地质, 2001, (3):166-170. https://www.cnki.com.cn/Article/CJFDTOTAL-JXDZ200103001.htm
[28] 罗健.我国红色岩层及其侵蚀性地下水[J].西南交通大学学报, 1988, (2):90-100. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT198802012.htm
-