新疆东准噶尔地区老君庙岩群时代厘定、原岩恢复及对基底的指示意义

杨硕, 刘阁, 靳刘圆, 郑海峰, 王盛栋. 新疆东准噶尔地区老君庙岩群时代厘定、原岩恢复及对基底的指示意义[J]. 地质通报, 2020, 39(1): 7-17.
引用本文: 杨硕, 刘阁, 靳刘圆, 郑海峰, 王盛栋. 新疆东准噶尔地区老君庙岩群时代厘定、原岩恢复及对基底的指示意义[J]. 地质通报, 2020, 39(1): 7-17.
YANG Shuo, LIU Ge, JIN Liuyuan, ZHENG Haifeng, WANG Shengdong. Dating and reconstruction of protoliths of the Laojunmiao Group and its indications for basement in eastern Junggar, Xinjiang[J]. Geological Bulletin of China, 2020, 39(1): 7-17.
Citation: YANG Shuo, LIU Ge, JIN Liuyuan, ZHENG Haifeng, WANG Shengdong. Dating and reconstruction of protoliths of the Laojunmiao Group and its indications for basement in eastern Junggar, Xinjiang[J]. Geological Bulletin of China, 2020, 39(1): 7-17.

新疆东准噶尔地区老君庙岩群时代厘定、原岩恢复及对基底的指示意义

  • 基金项目:
    中央返还两权价款项目(编号:A16-1-LQ17)和中国地质调查局项目《中国新疆区域地质调查片区总结与服务产品开发》(编号:DD20160345-04)、《新疆矿产资源调查成果综合集成与服务产品开发》(编号:DD20160346)
详细信息
    作者简介: 杨硕(1988-), 男, 硕士, 构造地质学专业, 从事区域地质调查工作。E-mail:yangshxs@126.com
  • 中图分类号: P534.41;P597+.3

Dating and reconstruction of protoliths of the Laojunmiao Group and its indications for basement in eastern Junggar, Xinjiang

  • 老君庙岩群出露于准噶尔盆地东北緣,发育一套高绿片岩相-角闪岩相变质岩,其形成时代和构造背景长期以来存在争议。对钾长糜棱片岩进行锆石U-Pb定年,结果显示老君庙岩群年龄值主要集中在500~54OMa之间,少数为新元古代早期(740~920Ma),根据最年轻的峰值年龄(约520Ma)将老君庙岩群时代重新厘定为早寒武世。利用岩石地球化学特征对老君庙岩群进行原岩恢复,显示其具有大陆壳的特征,原岩建造类似复理石建造,其形成的构造环境应属陆緣海环境。关于准噶尔盆地基底属性的问题一直没有定论,通过本次研究,结合区域资料,认为东准噶尔地区存在前寒武基底。

  • 加载中
  • 图 1  研究区地质简图(据参考文献①修改)

    Figure 1. 

    图 2  老君庙岩群锆石阴极发光(CL)图像、测点及年龄

    Figure 2. 

    图 3  老君庙岩群锆石U-Pb谐和图(a)及年龄概率分布直方图(b)

    Figure 3. 

    图 4  老君庙岩群稀土元素配分模式图(球粒陨石标准化值据参考文献[25])

    Figure 4. 

    图 5  老君庙岩群微量元素蛛网图(原始地幔标准化值据参考文献[26])

    Figure 5. 

    图 6  老君庙岩群Si-((al+fm)-(c+alk))图解[27]

    Figure 6. 

    图 7  老君庙岩群log(SiO2/Al2O3)-log(Na2O/K2O)图解[28]

    Figure 7. 

    图 8  东准噶尔地区碎屑锆石年龄统计(不含大于1000Ma的数据)

    Figure 8. 

    表 1  老君庙岩群LA-ICP-MS锆石U-Th-Pb测年结果

    Table 1.  Data of LA-ICP-MS U-Th-Pb dating of zircons from Laojunmiao Group

    测点号含量/10-6Th/U同位素比值年龄/Ma
    PbThU206Pb/238U207Pb/235U207Pb/206Pb206Pb/238U
    1 27 16 58 0.28 0.1474 0.0023 1.610 0.062 0.0793 0.0031 886.2 12.9
    21842554490.570.08530.00100.6880.0140.05850.0013527.95.8
    31171462550.570.08520.00130.7720.0470.07010.0080527.27.8
    41481896360.300.08260.00050.6740.0120.05900.0010511.73.3
    54554793691.300.12140.00091.0980.0200.06550.0012738.55.4
    61941472790.520.15090.00131.4940.0300.07160.0014906.07.4
    71932833580.790.08340.00070.6430.0150.05580.0013516.34.3
    81191682590.650.08330.00080.6840.0200.05970.0017515.54.8
    91852613280.800.08450.00080.7030.0160.06010.0013523.14.5
    101311892840.660.08430.00090.7240.0190.06220.0016521.95.4
    113011968460.230.15310.00121.5600.0250.07350.0011918.36.6
    121622094090.510.08570.00110.7290.0210.06180.0017529.96.5
    131671493030.490.13180.00121.2020.0270.06600.0015798.46.9
    14176918240.110.15230.00121.4970.0260.07110.0013913.76.8
    151251912360.810.08250.00120.6920.0630.05930.0039510.87.4
    161672413620.670.08040.00080.7050.0220.06320.0019498.64.9
    17152983170.310.14010.00241.5890.0460.08120.0017845.113.7
    181822654220.630.08410.00080.6810.0140.05850.0012520.64.8
    19851132550.440.08410.00090.6880.0200.05940.0018520.75.8
    203054288180.520.08540.00070.6880.0140.05820.0012528.34.3
    211121443020.480.08650.00100.7480.0340.06330.0034534.95.9
    221381873330.560.08370.00090.7040.0210.06100.0019517.95.5
    231501083420.320.15210.00131.4960.0300.07130.0015912.57.5
    241141532840.540.08700.00090.7360.0310.06140.0026537.75.6
    25101921290.710.14300.00181.3810.0370.07020.0019861.710.3
    26 167 738 218 3.39 0.1376 0.0016 1.373 0.033 0.0723 0.0017 831.1 8.9
    下载: 导出CSV

    表 2  老君庙岩群主量、微量及稀土元素组成

    Table 2.  Compositions of major, trace and rare earth elements in Laojunmiao Group

    样品号QY-1QY-2QY-3QY-4QY-5QY-6QY-7QY-8QY-9QY-10QY-11QY-12QY-13
    SiO269.7569.070.1562.9262.2161.6964.5866.2577.4863.3679.8762.7960.79
    TiO20.290.350.310.710.660.580.380.390.500.480.110.770.77
    Al2O313.4715.3113.7415.3314.2012.119.369.818.1310.483.5212.3712.97
    Fe2O30.811.030.881.381.720.960.710.581.121.400.670.901.67
    FeO1.351.781.624.603.974.242.903.241.902.741.285.004.39
    MnO0.050.050.040.090.090.110.100.110.070.130.100.090.09
    MgO1.001.740.894.093.713.702.652.811.152.850.853.704.10
    CaO2.640.712.761.623.665.967.155.532.596.786.653.483.83
    Na2O5.866.495.962.703.363.062.603.083.493.441.202.902.31
    K2O0.740.720.692.511.741.180.870.610.290.570.151.061.74
    P2O50.070.090.080.170.170.150.120.110.160.130.070.180.19
    烧失量3.233.231.863.554.396.217.536.193.127.175.975.315.85
    合计99.4100.799.2100.2100.3100.499.399.1100.299.8100.399.199.2
    Rb26.929.624.189.253.139.234.625.513.622.46.544.574.1
    Sr121.5223178.5188300277243169.5101.5186.5143.5114139
    Ba65.993.783.149146930319615977.4159158191352
    Th6.137.26.219.237.927.44.925.811.96.382.5112.5514.45
    U0.951.241.162.652.192.380.951.183.230.90.431.682.51
    Nb5.84.53.78.87.86.74.54.97.45.51.88.69
    Ta0.20.10.20.40.60.40.420.430.640.470.160.680.72
    Zr80113801631511688510129913334240252
    Hf2.43.42.54.64.14.72.32.77.53.50.96.36.4
    P285.5367.1326.3693.4693.4611.8489.5448.7652.6530.3285.5734.2775
    Ti232028002480568052804640304031204000384088061606160
    La17.618.813.224.623.321.31516.827.119.35.23237.5
    Ce30.734.724.251.848.544.131.333.456.538.910.968.677.9
    Pr3.243.612.585.925.75.13.523.796.334.471.377.438.29
    Nd11.412.69.123.12220.513.914.924.717.75.72932.1
    Sm1.942.051.554.924.964.082.72.984.893.471.265.396.08
    Eu0.50.570.441.131.20.990.630.650.930.810.251.091.24
    Gd1.551.611.214.464.463.812.422.574.563.191.34.445.23
    Tb0.20.250.20.740.730.590.360.380.710.470.190.610.73
    Dy1.181.261.074.464.113.362.262.454.72.911.273.794.51
    Ho0.220.250.210.950.820.670.480.510.980.610.290.790.86
    Er0.590.710.62.722.371.891.371.482.921.710.922.272.5
    Tm0.090.110.090.440.350.280.20.220.440.270.150.360.37
    Yb0.60.730.62.631.871.391.512.771.712.451.132.452.52
    Lu0.10.110.10.410.340.30.210.220.410.270.210.370.4
    Y6.56.76.424.521.11813.51431.417922.925.8
    ∑REE76.484.161.6153142.2126.889.295.9169.3112.8181.5206
    LR/HR5.936.174.872.692.893.123.023.112.463.013.783.8
    CeN/YbN13.2312.310.435.095.656.15.825.725.285.887.248.0
    δEu0.850.930.950.720.770.760.740.70.590.730.660.66
    RbN/YbN14.7613.3513.2211.167.876.98.195.561.624.315.989.68
    (al+fm)- (c+alk)22472247242-17-512-102423
    Si尼格里值507522497445399378421474803396455413
    注:QY-1~QY-6为白云母钾长糜棱片岩;QY-7、QY-9、QY-10和QY-13为斜长绿泥石英片岩;QY-8为斜长二云母石英片岩;QY-11为石英脉;QY-12为黑云母斜长片岩;数据由广州澳实分析检测公司测试;主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV
  • [1]

    成守德, 王广瑞, 杨树德, 等.新疆古板块构造[J].新疆地质, 1986, (2):3-28. http://d.old.wanfangdata.com.cn/Thesis/Y056005

    [2]

    黄汲清, 任纪舜, 姜春发, 等.中国大地构造基本轮廓[J].地质学报, 1977, 51(2):19-37. http://www.cnki.com.cn/Article/CJFDTotal-DZXE197702002.htm

    [3]

    陈哲夫, 梁云海.新疆多旋回构造与板块运动[J].新疆地质, 1991, (2):95-107. http://www.cnki.com.cn/Article/CJFDTotal-XJDI199102000.htm

    [4]

    李锦轶, 何国琦, 徐新, 等.新疆北部及邻区地壳构造格架及其形成过程的初步探讨[J].地质学报, 2006, 80(1):148-168. doi: 10.3321/j.issn:0001-5717.2006.01.017

    [5]

    张海祥, 牛贺才, Sato H, 等.新疆北部晚古生代埃达克岩、富铌玄武岩组合:古亚洲洋板块南向俯冲的证据[J].高校地质学报, 2004, 10(1):106-113. doi: 10.3969/j.issn.1006-7493.2004.01.010

    [6]

    张招崇, 周刚, 闫升好, 等.阿尔泰山南缘晚古生代火山岩的地质地球化学特征及其对构造演化的启示[J].地质学报, 2007, 81(3):344-358. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200703007

    [7]

    马瑞士, 舒良树, 孙家齐.东天山构造演化与成矿[M].北京:地质出版社, 1997.

    [8]

    李锦轶, 朱宝清.新疆东准噶尔卡拉麦里地区晚古生代板块构造的基本特征[J].地质论评, 1990, 36(4):305-316. doi: 10.3321/j.issn:0371-5736.1990.04.003

    [9]

    李锦轶.新疆东准噶尔蛇绿岩的基本特征和侵位历史[J].岩石学报, 1995, (s1):73-84. http://www.cnki.com.cn/Article/CJFDTotal-YSXB5S1.005.htm

    [10]

    何国琦, 李茂松, 贾进斗, 等.论新疆东准噶尔蛇绿岩的时代及其意义[J].北京大学学报(自然科学版), 2001, 37(6):852-858. doi: 10.3321/j.issn:0479-8023.2001.06.017

    [11]

    唐红峰, 苏玉平, 刘丛强, 等.新疆北部卡拉麦里斜长花岗岩的锆石U-Pb年龄及其构造意义[J].大地构造与成矿学, 2007, 31(1):110-117. doi: 10.3969/j.issn.1001-1552.2007.01.013

    [12]

    汪帮耀, 姜常义, 李永军, 等.新疆东准噶尔卡拉麦里蛇绿岩的地球化学特征及大地构造意义[J].矿物岩石, 2009, 29(3):74-82. doi: 10.3969/j.issn.1001-6872.2009.03.012

    [13]

    赵恒乐, 许凡, 张冀, 等.东准噶尔卡拉麦里蛇绿岩形成时代、地质特征及构造意义[J].新疆地质, 2012, 30(2):161-164. doi: 10.3969/j.issn.1000-8845.2012.02.008

    [14]

    黄岗, 牛广智, 王新录, 等.新疆东准噶尔卡拉麦里蛇绿岩的形成时代和侵位时限——来自辉绿岩和凝灰岩LA-ICP-MS锆石U-Pb年龄的证据[J].地质通报, 2012, 31(8):1267-1278. doi: 10.3969/j.issn.1671-2552.2012.08.006

    [15]

    韩琼.东准噶尔卡拉麦里成矿带金矿成矿规律与成矿模式研究[D].新疆大学硕士学位论文, 2014.

    [16]

    闫晓兰, 李逸凡, 刘红涛, 等.新疆卡拉麦里造山型金矿系统[J].新疆地质, 2014, 32(3):328-333. doi: 10.3969/j.issn.1000-8845.2014.03.008

    [17]

    陈伟志, 顾雪祥, 章永梅, 等.新疆东准噶尔金水泉金矿床地质特征、成矿时代及其地质意义[J].地质通报, 2019, 38(7):1240-1255. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201907016

    [18]

    Anderson T.Correction of common lead in U-Pb analyses that do not report 204Pb[J].Chemical Geology, 2002, 192(1/2):59-79. https://www.sciencedirect.com/science/article/pii/S000925410200195X

    [19]

    Ludwig K R.Isoplot /Ex version 2.49:A geochronological toolkit for Microsoft Excel[M].Berkeley:Berkeley Geochronology Center Special Publication, 2003:1-56.

    [20]

    路远发.Geokit:一个用VBA构建的地球化学工具软件包[J].地球化学, 2004, 33(5):459-464. doi: 10.3321/j.issn:0379-1726.2004.05.004

    [21]

    Vavra G, Schmid R, Gebauer D.Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons:Geochronology of the ivrea zone(Southern Alps)[J].Contributions to Mineralogy and Petrology, 1999, 134(4):380-404. doi: 10.1007/s004100050492

    [22]

    吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    [23]

    Gehrels G E, Johnsson M J, Howell D G.Detrital zircon geochronology of the Adams argillite and Nation River Formation, East-Central Alaska, U.S.A[J].Journal of Sedimentary Research, 1999, 69(1):135-144. doi: 10.2110/jsr.69.135

    [24]

    Cawood P A, Nemchin A A.Provenance record of a rift basin:U/Pb ages of detrital zircons from the Perth basin, West Australia[J].Sedimentary Geology, 2000, 134(3):209-234. https://www.sciencedirect.com/science/article/abs/pii/S0037073800000440

    [25]

    Boynton W V.Chapter 3-Cosmochemistry of the Rare Earth Elements:Meteorite Studies[J].Developments in Geochemistry, 1984:63-114. https://www.sciencedirect.com/science/article/pii/B9780444421487500083

    [26]

    Sun S S, McDonough W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J].Geological Society London Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [27]

    Simonen A.Stratigraphy and sedimentation of the Svecofennidic, early Archean supracrustal rocks in southwestern Finland[J].Bulletin of the Geological Society of Finland, 1953, 160:1-64. https://www.sciencedirect.com/science/article/pii/030192688690015X

    [28]

    Pettijohn F J, Potter P E, Siever R.Sand and Sandstone[M].Springer, 1972.

    [29]

    李锦轶, 肖序常, 陈文.准噶尔盆地东部的前晚奥陶世陆壳基底——来自盆地东北缘老君庙变质岩的证据[J].地质通报, 2000, 19(3):297-67. doi: 10.3969/j.issn.1671-2552.2000.03.014

    [30]

    Rainbird R H, Hamiltom M A, Young G M.Detrital zircon geochronology and provenance of the Torridonian, NW Scotland[J].Journal of the Geological Society, 2001, 158(1):15-27. doi: 10.1144/jgs.158.1.15

    [31]

    Nelson D R.An assessment of the determination of depositional ages for precambrian clastic sedimentary rocks by U-Pb dating of detrital zircons[J].Sedimentary Geology, 2001, 141:37-60. https://www.sciencedirect.com/science/article/pii/S0037073801000677

    [32]

    Fedo C M, Sircombe K N, Rainbird R H.Detrital zircon analysis of the sedimentary record[J].Reviews in Mineralogy & Geochemistry, 2003, 53(1):277-303. http://d.old.wanfangdata.com.cn/NSTLQK/10.2113-0530277/

    [33]

    Dickinson W R, Gehrels G E.Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata:A test against a Colorado Plateau Mesozoic database[J].Earth & Planetary Science Letters, 2009, 288(1):115-125. https://www.sciencedirect.com/science/article/pii/S0012821X09005469

    [34]

    Johnston S, Gehrels G, Valencia V, et al.Small-Volume U-Pb Zircon Geochronology by Laser Ablation-Multicollector-ICP-MS[J].Chemical Geology, 2009, 259(3):218-229. https://www.sciencedirect.com/science/article/pii/S0009254108005159

    [35]

    Lawton T F, Bradford B A.Correlation and Provenance of Upper Cretaceous(Campanian)Fluvial Strata, Utah, U.S.A.from Zircon U-Pb Geochronology and Petrography[J].Journal of Sedimentary Research, 2011, 81(78):495-512. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7dd45a97b027e1e4e6f47af56b095b02

    [36]

    Robinson A C, Ducea M, Lapen T J.Detrital zircon and isotopic constraints on the crustal architecture and tectonic evolution of the northeastern Pamir[J].Tectonics, 2012, 31(2):1-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2011TC003013

    [37]

    Ludwig K R, Mundil R.Extracting reliable U-Pb ages and errors from complex populations of zircons from Phanerozoic tuffs[C]//Journal conference Abstract 12th Goldschmidt Conference, 2002.

    [38]

    Ludwig K R.User's Manual for isoplot 3.70.A geochronological toolkit for Microsoft Excel[M].Berkeley:Berkeley Geochronology Center Special Publication No.4, 2008.

    [39]

    肖序常, 汤耀庆, 李锦轶.试论新疆北部大地构造演化[J].新疆地质科学, 1990, (1):47-68. http://www.cnki.com.cn/Article/CJFDTotal-XJDI199802000.htm

    [40]

    徐新忠, 王有学, 蒋亚明, 等.新-甘地震测深剖面的地壳速度结构及大地构造单元划分[J].新疆地质, 1992, 10(2):147-154. http://www.cnki.com.cn/Article/CJFD1992-XJDI199202006.htm

    [41]

    李春昱.中国板块构造的轮廓[J].地质科学院院报, 1980, 2(1):1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000001810336

    [42]

    Hsü K J.Relict Back-Arc Basins: Principles of Recognition and Possible New Examples from China[C]//Kleinspehn K L, Paola C.Frontiers in Sedimentary Geology, New Perspectives in Basin Analysis.Springer New York, 1988: 245-263.

    [43]

    任纪舜.中国大地构造及其演化[M].北京:科学出版社, 1980:50-52.

    [44]

    王鸿祯.中国古地理图[M].北京:地图出版社, 1986.

    [45]

    吴庆福.论准噶尔中间地块的存在及其在哈萨克斯坦板块构造演化中的位置[C]//中国北方板块构造论文集(2).北京: 地质出版社, 1987: 29-38.

    [46]

    张前锋, 胡霭琴, 张国新, 等.新疆东准噶尔小石头泉前寒武纪变质岩的Sm-Nd等时线年龄证据[J].科学通报, 1996, 41(16):1498-1500. doi: 10.3321/j.issn:0023-074X.1996.16.016

    [47]

    费鼎, 张新初.准噶尔地区磁场解释及区域构造特征[J].地球物理学报, 1987, 30(5):459-468. doi: 10.3321/j.issn:0001-5733.1987.05.003

    [48]

    胡霭琴, 韦刚健.关于准噶尔盆地基底时代问题的讨论——据同位素年代学研究结果[J].新疆地质, 2003, 21(4):398-406. doi: 10.3969/j.issn.1000-8845.2003.04.004

    [49]

    李亚萍, 李锦轶, 孙桂华, 等.准噶尔盆地基底的探讨:来自原泥盆纪卡拉麦里组砂岩碎屑锆石的证据[J].岩石学报, 2007, 23(7):1577-1590. doi: 10.3969/j.issn.1000-0569.2007.07.003

    [50]

    王一剑, 刘洪军, 周娟萍, 等.东准噶尔卡姆斯特北海相火山-沉积岩碎屑锆石LA-ICP-MS U-Pb年龄及地质意义[J].现代地质, 2011, 25(6):1047-1058. doi: 10.3969/j.issn.1000-8527.2011.06.003

    [51]

    聂峰, 田晓丽, 李振生.东准造山带原泥盆系的形成时代及源区:碎屑锆石U-Pb年代学证据[J].地质科学, 2014, 49(2):695-717. doi: 10.3969/j.issn.0563-5020.2014.02.024

    [52]

    苏玉平, 郑建平, Griffin W L, 等.东准噶尔盆地巴塔玛依内山组火山岩锆石U-Pb年代及Hf同位素研究[J].科学通报, 2010, 55(30):2931-2943. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201030007

    [53]

    Ma X X, Shu L S, Santosh M, et al.Detrital zircon U-Pb geochronology and Hf isotope data from Central Tianshan suggesting a link with the Tarim Block:Implications on Proterozoic supercontinent history[J].Precambrian Research, 2012, 206-207:1-16. doi: 10.1016/j.precamres.2012.02.015

    [54]

    李忠, 彭守涛.天山南北麓中—新生界碎屑锆石U-Pb年代学记录、物源体系分析与陆内盆山演化[J].岩石学报, 2013, 29(3):739-755. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201303001

    [55]

    Shu L S, Deng X L, Zhu W B, et al.Precambrian tectonic evolution of the Tarim Block, NW China:New geochronological insights from the Quruqtagh domain[J].Journal of Asian Earth Sciences, 2011, 42(5):774-790. doi: 10.1016/j.jseaes.2010.08.018

    [56]

    朱文斌, 张志勇, 舒良树, 等.塔里木北缘前寒武基底隆升剥露史:来自磷灰石裂变径迹的证据[J].岩石学报, 2007, 23(7):1671-1682. doi: 10.3969/j.issn.1000-0569.2007.07.013

    [57]

    胡霭琴, 张国新, 张前锋, 等.阿尔泰造山带变质岩系时代问题的讨论[J].地质科学, 2002, 37(2):129-142. doi: 10.3321/j.issn:0563-5020.2002.02.001

    [58]

    刘源, 杨家喜, 胡健民, 等.阿尔泰构造带喀纳斯群时代的厘定及其意义[J].岩石学报, 2013, 29(3):887-898. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201303012

    [59]

    Kuzmichev A B, Bibikova E V, Zhuravlev D Z.Neoproterozoic(~800 Ma)orogeny in the Tuva-Mongolia Massif(Siberia):island arc-continent collision at the northeast Rodinia margin[J].Precambrian Research, 2001, 110(1):109-126. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-S0301-9268(01)00183-8/

    [60]

    Todt W, Bibikova E V, Nutman A.Age of Palaeozoic granites and metamorphism in the Tuvino-Mongolian Massif of the Central Asian Mobile Belt:loss of a Precambrian microcontinent[J].Precambrian Research, 2001, 110(1):143-164. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-S0301-9268(01)00185-1/

    [61]

    Dobretsov N L, Buslov M M, Yu U.Fragments of oceanic islands in accretion-collision areas of Gorny Altai and Salair, southern Siberia, Russia:early stages of continental crustal growth of the Siberian continent in Vendian-Early Cambrian time[J].Journal of Asian Earth Sciences, 2004, 23(5):673-690. doi: 10.1016/S1367-9120(03)00132-9

    [62]

    李文铅, 马华东, 王冉, 等.东天山康古尔塔格蛇绿岩SHRIMP年龄、Nd-Sr同位素特征及构造意义[J].岩石学报, 2008, 24(4):773-780. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200804016

    [63]

    李锦轶, 王克卓, 孙桂华, 等.东天山吐哈盆地南缘古生代活动陆缘残片:中亚地区古亚洲洋板块俯冲的地质记录[J].岩石学报, 2006, 22(5):1087-1102. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200605004

    [64]

    徐学义, 夏林圻, 马中平, 等.北天山巴音沟蛇绿岩斜长花岗岩SHRIMP锆石U-Pb年龄及蛇绿岩成因研究[J].岩石学报, 2006, 22(1):83-94. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200601009

    [65]

    徐学义, 李向民, 马中平, 等.北天山巴音沟蛇绿岩形成于早石炭世:来自辉长岩LA-ICPMS锆石U-Pb年龄的证据[J].地质学报, 2006, 80(8):1168-1176. doi: 10.3321/j.issn:0001-5717.2006.08.010

    [66]

    王银喜, 顾连兴, 张遵忠, 等.博格达裂谷双峰式火山岩地质年代学与Nd-Sr-Pb同位素地球化学特征[J].岩石学报, 2006, 22(5):169-178. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200605013

    [67]

    廖卓庭, 周宇星, 王克良, 等.新疆博格达山宽沟地区的石炭系[J].地层学杂志, 1992, 16(2):105-110. http://www.cnki.com.cn/Article/CJFDTotal-DCXZ199202002.htm

    [68]

    陈登超, 赵省民, 邓坚.新疆东部博格达山北侧石炭系碎屑锆石U-Pb定年及其地质意义[J].地质学报, 2010, 84(12):1770-1780. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201012006

    [69]

    简平, 刘敦一, 张旗, 等.蛇绿岩及蛇绿岩中浅色岩的SHRIMP U-Pb测年[J].地学前缘, 2003, 10(4):439-456. doi: 10.3321/j.issn:1005-2321.2003.04.012

    [70]

    肖文交, Windley B F, 阎全人, 等.北疆地区阿尔曼太蛇绿岩锆石SHRIMP年龄及其大地构造意义[J].地质学报, 2006, 80(1):32-37. doi: 10.3321/j.issn:0001-5717.2006.01.004

    [71]

    张元元, 郭召杰.准噶尔北部蛇绿岩形成时限新证据及其东、西准噶尔蛇绿岩的对比研究[J].岩石学报, 2010, 26(2):422-430. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201002006

    [72]

    张越, 陈隽璐, 孙吉明, 等.新疆东准噶尔阿尔曼太蛇绿岩中玄武岩地球化学特征及其地质意义[J].地质通报, 2019, 38(9):1431-1442. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201909003

    [73]

    Long X P, Yuan C, Sun M, et al.Geochemistry and U-Pb detrital zircon dating of Paleozoic graywackes in East Junggar, NW China:Insights into subduction-accretion processes in the southern Central Asian Orogenic Belt[J].Gondwana Research, 2012, 21(2/3):637-653. https://www.sciencedirect.com/science/article/abs/pii/S1342937X11001663

    [74]

    新疆维吾尔自治区地质矿产局.新疆维吾尔自治区区域地质志[M].北京:地质出版社, 1993.

    [75]

    Xu B, Jian P, Zheng H F, et al.U-Pb zircon geochronology and geochemistry of Neoproterozoic volcanic rocks in the Tarim Block of northwest China:implications for the breakup of Rodinia supercontinent and Neoproterozoic glaciations[J].Precambrian Research, 2005, 136(2):107-123. doi: 10.1016/j.precamres.2004.09.007

    [76]

    Kwon S T, Tilton G R, Coleman R G, et al.Isotopic studies bearing on the tectonics of the West Junggar Region, Xinjiang, China[J].Tectonics, 1989, 8(4):719-727. doi: 10.1029/TC008i004p00719

    [77]

    肖序常, 汤耀庆, 冯益民.新疆北部及其邻区大地构造[M].北京:地质出版社, 1992:1-162.

    [78]

    杨海波, 高鹏, 李兵, 等.新疆西天山达鲁巴依蛇绿岩地质特征[J].新疆地质, 200523(2):123-126. doi: 10.3969/j.issn.1000-8845.2005.02.004

    新疆维吾尔自治区地质调查院.新疆1:25万北山煤窑幅L46C004001区域地质调查报告.2018.

    新疆第一区域地质调查大队.新疆东准噶尔地区1:5万L46E019004等6幅区域地质调查报告.2014.

    新疆维吾尔自治区地质调查院.新疆1:25万纸房幅L46C004002区域地质调查报告.2000.

    陕西省地质调查院.新疆1:25万滴水泉幅L46C003004区域地质调查报告.2015.

  • 加载中

(8)

(2)

计量
  • 文章访问数:  641
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2018-07-20
修回日期:  2018-10-22
刊出日期:  2020-01-25

目录