安徽栏杆含金刚石基性岩中石榴子石矿物学特征

蔡逸涛, 张洁, 康丛轩, 杨献忠, 曹正琦, 董钟斗, 马玉广, 施建斌. 安徽栏杆含金刚石基性岩中石榴子石矿物学特征[J]. 地质通报, 2019, 38(1): 110-120.
引用本文: 蔡逸涛, 张洁, 康丛轩, 杨献忠, 曹正琦, 董钟斗, 马玉广, 施建斌. 安徽栏杆含金刚石基性岩中石榴子石矿物学特征[J]. 地质通报, 2019, 38(1): 110-120.
CAI Yitao, ZHANG Jie, KANG Congxuan, YANG Xianzhong, CAO Zhengqi, DONG Zhongdou, MA Yuguang, SHI Jianbin. Mineral chemistry characteristics of garnets in diamondiferous basite of Lan'gan area, Anhui Province[J]. Geological Bulletin of China, 2019, 38(1): 110-120.
Citation: CAI Yitao, ZHANG Jie, KANG Congxuan, YANG Xianzhong, CAO Zhengqi, DONG Zhongdou, MA Yuguang, SHI Jianbin. Mineral chemistry characteristics of garnets in diamondiferous basite of Lan'gan area, Anhui Province[J]. Geological Bulletin of China, 2019, 38(1): 110-120.

安徽栏杆含金刚石基性岩中石榴子石矿物学特征

  • 基金项目:
    国家自然科学基金青年科学基金项目《安徽栏杆含金刚石母岩及金刚石矿床指示矿物特征研究》(批准号:41402075)和中国地质调查局项目《安徽栏杆金刚石成矿规律与苏皖地区金刚石找矿靶区优选》(编号:12120114054301)、《华北和扬子地区金刚石矿产调查》(编号:DD20160059)
详细信息
    作者简介: 蔡逸涛(1982-), 男, 博士, 高级工程师, 从事金刚石矿产地质调查及研究。E-mail:ivan821129@163.com
    通讯作者: 张洁(1980-), 女, 博士, 高级工程师, 从事矿产及遥感地质学研究。E-mail:3976618@qq.com
  • 中图分类号: P619.24+1;P619.24+4

Mineral chemistry characteristics of garnets in diamondiferous basite of Lan'gan area, Anhui Province

More Information
  • 在中国东部皖北地区分布着新元古代镁铁质岩,其中一些碱性基性岩为金刚石的赋矿岩石。为了确定安徽栏杆金刚石矿区的石榴子石种类,对矿区内不同类型的石榴子石进行系统采样,测定了62件石榴子石微区化学成分。结果显示,安徽栏杆石榴子石矿物化学式A32+B23+(SiO43中的A组阳离子由Mg2+、Fe2+和Ca2+离子占位,B主要由Al3+、Fe3+、Mn3+和Cr3+离子占位,三价阳离子主要为Al3+,二价阳离子主要为Ca2+,表明研究区石榴子石主要为钙铝-钙铁-镁铝石榴子石系列。在62个样品中,发现了超硅石榴子石。经过计算其形成的压力范围为12.1~12.8GPa,深度可达300km。

  • 加载中
  • 图 1  郯庐断裂带构造及栏杆地区地质简图[3-4]

    Figure 1. 

    图 2  石榴子石从边部到核部成分变化图示

    Figure 2. 

    图 3  石榴子石从边部到核部成分非线性变化

    Figure 3. 

    图 4  石榴子石端元组分三角图(据参考文献[13]修改)

    Figure 4. 

    表 1  石榴子石主量元素含量

    Table 1.  Composition of major elements of garnets

    %
    样号 G3c-1 G3c-2 G3c-3 G3c-4 G3c-5 G3c-6 G3c-7 G3c-8 G3c-9 G3c-l0 G3c-11 G3c-12 G3c-13 G3c-14 G3c-15 G3c-16 G3c-17 G3c-18 G3c-19 G3c-20 G3c-21 G3c-22 G3c-23 G3c-24 G3c-25 G3c-26 G3c-27 G3c-28 G3c-29 G3c-30 G3c-31 G3c-32 G3c-33 G3c-34 G3C-35 G3c-36 G3c-37 G3c-38 G3c-39 G3c-40 G3h-1 G3h-2 G3h-3 G3h-4 G3h-5 G3h-6 G3h-7 G3h-8 G3h-9 G3h-10 G3h-11 G3h-12 G3h-13 G3H-14 G3h-15 G3h-16 G3h-17 G3h-18 G3h-19 G3h-20 G3h-21 G3h-22
    SiO2 37.91 37.87 37.80 37.92 37.24 37.77 36.96 37.47 37.46 37.44 37.42 37.19 37.91 37.22 37.80 38.70 37.27 37.10 37.53 36.80 37.39 37.76 37.63 37.95 37.46 37.78 37.40 37.45 37.75 37.54 37.40 37.26 38.24 36.79 37.51 38.53 37.02 37.66 42.53 37.95 37.51 37.80 37.59 37 37 37.93 38 08 37 98 37 98 37.39 37.31 37 74 37.50 37.70 38.10 38 44 37.55 37.59 38.36 37 70 38 30 37.77 37.97
    TiO2 0.42 0.41 0.30 0.20 0.57 0.66 0.82 0.52 0.42 0.39 0.74 0.27 0.38 0.36 0.45 0.36 0.42 0.07 0.80 0.54 0.40 0.51 0.54 0.60 0.63 0.28 0.52 0.27 0.28 0.64 0.71 0.61 0.44 0.33 0.58 0.48 0.39 0.53 0.38 0.44 0 37 0.89 0.88 0.36 0.51 0.43 0.56 0 18 0 56 0.69 0.38 0.41 0.52 0 88 0.64 0.53 0 31 0.76 0.65 0.55 0 38 0 39
    Al2O3 16.37 16.50 15.68 15.53 15.73 16.93 14.82 16.51 12.85 14.63 15.19 14.09 15.73 14.85 15.37 16.64 13.08 9.85 15.20 14.47 14.54 16.38 16.44 16.42 16.93 15.09 15.32 12.98 15.14 14.92 15.42 15.07 16.87 15.79 13.45 17.07 15.05 15.85 10.93 16.01 15.80 17.11 16.45 15.04 16.21 15.26 16.78 15.35 15.80 16.71 14.65 15.35 15.92 15.72 16.99 16.27 15.46 16.70 16.87 17.54 16.24 16.31
    FeO 7.51 6.84 8.72 8.87 7.49 6.30 9.02 6.93 11.84 10.15 S.72 10.88 8.50 9.74 8.62 7.05 11.87 15.96 8.43 9.62 9.79 7.60 7.69 6.95 6.99 9.06 8.56 12.14 9.14 9.16 8.20 8.98 7.13 8 84 11.16 6.78 9.32 8.36 10.18 8.06 848 6.29 7.03 9.72 7.63 8.95 7.24 9.28 8.29 7.20 9.95 8.49 8.01 7.63 6.60 7.43 9.11 6.93 6.99 6.22 7.92 7.79
    MnO 0.22 0.13 0.18 0.13 0.20 0.12 0.20 0.15 0.17 0.17 0.15 0.14 0.13 0.05 0.08 0.15 0.09 0.05 0.12 0.06 0.13 0.07 0.13 0.15 0.21 0.14 0.18 0.12 0.15 0.02 0.19 0.16 0.06 0.09 0.07 0.07 0.27 0.20 0.09 0.08 0 10 0.09 0.11 0.24 0.12 0.13 0.17 0 17 0 10 0 12 0.21 0 17 0 06 0 12 0.06 0.24 006 0 13 0.13 0.18 021 0 18
    MgO 0.14 0.17 0.17 0.11 0.20 0.20 0.21 0.22 0.15 0.14 0.21 0.16 0.11 0.14 0.14 0.20 0.15 0.07 0.22 0.18 0.13 0.22 0.29 0.19 0.22 0.15 0.20 0.09 0.13 0.18 0.18 0.18 0.15 0.19 0.17 0.22 0.17 0.22 3.97 0.16 0 15 0.24 0.24 0.16 0.16 0.14 0.25 0.14 0 16 0.25 0.14 0.16 0.20 0.21 0.21 0.24 0.15 0.22 0.21 0.22 0 16 0.17
    CaO 36.66 36.89 36.62 36.48 36.60 36.57 36.66 36.81 36.17 36.58 36.47 36.39 36.51 36.57 36.57 36.41 36.18 35.60 36.52 36.37 36.68 36.88 36.73 36.90 36.87 36.60 36.53 36.21 36.78 36.49 36.90 36.64 37.00 36.40 36.18 37.05 36.31 36.49 32.12 36.57 36.72 36.85 36.79 35.96 36.34 36.38 36.84 36.47 36.77 36.93 36.27 36.48 36.75 36.78 36.88 36.70 36.48 36.77 36.7! 36.92 36.65 36.72
    Na2O 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.01 0.01 0.00 0.00 0.01 0.03 0.00 0.02 0.00 0.00 0.00 0.01 0.01 0.04 0.03 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.12 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.03 0.03 0.01 0.01 0.00 0.02 0.02 0.03 0.01 0.00 0.01 0.02 0.00 0.02
    K20 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
    ZnO 0.04 0.04 0.05 0.07 0.05 0.00 0.11 0.00 0.00 0.00 0.03 0.00 0.00 0.05 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.03 0.07 0.00 0.07 0.04 0.01 0.08 0.02 0.09 0.00 0.06 0.00 0.00 0.05 0.06 0.00 0.02 0.00 0.00 0.03 0.02 0.03 0.08 0.00 0.05 0.00 0.00 0.00 0.02 0.07 0.05 0.00 0.06 0.04 0.03 0.07 0.05 0.05 003 0.00
    Cr2O3 0.00 0.00 0.01 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.04 0.07 0.00 0.00 0.00 0.05 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.04 0.01 0.07 0.00 0.00 0.08 0.03 0.04 0.00 0.03 0.13 0.01 0.00 0.00 0.02 0.01 0.02 0.00 0.01 0.00 0.00 0.05 0.00 0.04 0.04 0.00 0.00 0.03 0.00
    NiO 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.05 0.02 0.00 0.00 0.05 0.08 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.05 0.00 0.00 0.06 0.01 0.00 0.02 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.02 0.00 0.03 0.00 0.00 0.03 0.00 0.00 0.01 0.00 0.02 0.05 0.04 0.05 0.00 0.00
    总计1 99.29 98.X8 99.55 99.29 98.08 9S.62 98.79 98.59 99.06 99.50 99.02 99.13 99.27 98.98 99.11 99.62 99.07 98.69 98.92 98.09 99.06 99.48 99.48 99.37 99.32 99.17 98.74 99.34 99.46 99.00 99.18 98.94 99.94 98.49 99.13 100.34 98.59 99.38 99.31 99.17 99.30 99.15 99 04 98 99 99.36 99.91 99.58 99.14 99.23 99 37 98 68 99.23 99.45 99 94 99 02 99.25 100.02 99.34 100.04 99.38 99.55
    Fe2O3 7.38 7.13 8.38 8.38 7.88 6.39 9.22 7.21 11.23 9.65 8.61 10.27 8.05 9.34 8.39 6.71 11.12 14.57 8.44 9.44 9.58 7.56 7.58 7.23 7.04 8.84 8.53 11.30 8.96 8.87 8.53 8.91 6.97 8.41 10.49 6.68 9.04 8.08 11.16 7.71 8 21 6 46 7.20 8.88 7.30 8.44 7.16 8 66 8 19 7.30 9.32 843 7 94 7.77 6.55 7.57 8 56 6 86 6.91 6.22 767 7 56
    FeO 0.87 0.42 1.18 1.33 0.40 0.56 0.73 0.44 1.73 1.47 0.98 1.63 1.25 1.34 1.07 1.01 1.86 2.85 0.83 1.12 1.17 0.80 0.87 0.44 0.65 1.10 0.88 1.97 1.08 1.17 0.52 0.96 0.86 1.28 1.72 0.76 1.18 1.09 0.13 1.13 1.09 0.48 0.56 1.73 1.06 1.35 0.80 1.48 0.92 0.62 1.56 0.91 0.86 0.64 0.71 0.62 1.41 0.76 0.77 0.62 1.02 0.99
    总计2 100.01 99.58 100.38 100.13 98.87 99.26 99.72 99.32 100.18 100.47 99.87 100.16 100.07 99.91 99.93 100.29 100.16 100.15 99.76 99.03 100.01 100.21 100.24 100.06 100.01 100.06 99.59 100.46 100.35 99.85 100.00 99.83 100.63 99.33 100.18 100.99 99.49 100.18 100.07 99.99 99.95 99.86 99.93 99.71 100.21 100.61 100.45 99.93 99.93 100.29 99.51 100.02 100.21 100.57 99.75 100.10 100.71 100.02 100.64 100.15 100.28
    Si 3.00 3.01 3.01 3.03 3.00 2.99 2.98 2.99 3.05 3.01 3.00 3.01 3.02 3.00 3.02 3.04 3.04 3.11 3.01 3.00 3.01 2.99 2.98 3.00 2.96 3.03 3.00 3.05 3.02 3.01 2.99 2.99 3.00 2.97 3.04 3.01 2.99 3.00 3.31 3.01 3 01 2.97 2.99 3.02 3.02 2.99 2.98 2.98 3.01 3.01 3.03 2.99 3 03 2.99 2.96 3.03 3 01 3.00 3.02 3.01 2 99 301
    Al(T) 0.05 0.05 0.05 0.04 0.06 0.05 0.09 0.07 0.03 0.06 0.06 0.06 0.04 0.07 0.04 0.01 0.05 0.01 0.06 0.07 0.06 0.06 0.07 0.05 0.09 0.04 0.06 0.04 0.05 0.05 0.07 0.07 0.05 0.10 0.04 0.04 0.07 0.06 0.00 0.04 007 0.07 0.07 0.06 0.04 0.03 0.06 0.04 0.07 0.09 0.04 0.05 0.06 0.04 0.04 0.07 0 06 0.04 0.07 0.06 0.06 0.05
    Al(O) 1.48 1.50 1.42 1.42 1.43 1.53 1.32 1.48 1.20 1.32 1.37 1.28 1.44 1.34 1.41 1.53 1.21 0.96 1.38 1.31 1.32 1.46 1.46 1.48 1.49 1.38 1.39 1.21 1.38 1.36 1.38 1.36 1.51 141 1.25 1.53 1.36 1.43 1.00 1.45 1 42 1.52 1.46 1.37 1.48 1.41 1.49 1.40 1.41 1.47 1.34 1 40 1 44 1 43 1.53 1.46 1.40 1.50 1.50 1.56 1.46 1.47
    Ti 0.02 0.02 0.02 0.01 0.03 0.04 0.05 0.03 0.03 0.02 0.04 0.02 0.02 0.02 0.03 0.02 0.03 0.00 0.05 0.03 0.02 0.03 0.03 0.04 0.04 0.02 0.03 0.02 0.02 0.04 0.04 0.04 0.03 0.02 0.03 0.03 0.02 0.03 0.02 0.03 0.02 0.05 0.05 0.02 0.03 0.03 0.03 0.01 0.03 0.04 0.02 0.02 0.03 0.05 0.04 0.03 0.02 0.04 0.04 0.03 0.02 0.02
    Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    Fe3+ 0.43 0.42 0.49 0.49 0.47 0.38 0.55 0.42 0.67 0.57 0.51 0.61 0.47 0.55 0.49 0.39 0.66 0.S8 0.50 0.56 0.57 0.44 0.44 0.42 0.41 0.52 0.50 0.67 0.53 0.52 0.50 0.53 0.40 0.50 0.62 0.39 0.54 0.47 0.64 0.45 048 0.38 0.42 0.53 0.43 0.50 0.42 0.51 0 48 043 0.55 0.50 0 47 0.45 0.38 0.45 0 50 0.40 0.40 0.36 0.45 0.44
    Fe2+ 0.06 0.03 0.08 0.09 0.03 0.04 0.05 0.03 0.11 0.10 0.06 0.11 0.08 0.09 0.07 0.07 0.12 0.19 0.05 0.07 0.08 0.05 0.06 0.03 0.04 0.07 0.06 0.13 0.07 0.08 0.03 0.06 0.06 0.08 0.11 0.05 0.08 0.07 0.01 0.07 0.07 0.03 0.04 0.11 0.07 0.09 0.05 0.10 0.06 0.04 0.10 0.06 0.06 0.04 0.05 0.04 009 0.05 0.05 0.04 0.07 0.06
    Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.02 0.00 0.01 0.01 0.01 0.01 0.01
    Mg 0.02 0.02 0.02 0.01 0.02 0.02 0.03 0.03 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.01 0.03 0.02 0.02 0.03 0.03 0.02 0.03 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.03 0.45 0.02 0.02 0.03 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.02
    Ni 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    Zn 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    Ca 3.06 3.08 3.06 3.05 3.09 3.06 3.10 3.09 3.07 3.07 3.07 3.08 3.05 3.09 3.07 3.01 3.07 3.08 3.07 3.10 3.09 3.07 3.06 3.07 3.07 3.07 3.08 3.07 3.08 3.07 3.10 3.09 3.06 3.08 3.06 3.05 3.07 3.05 2.61 3.05 3.08 3.06 3.07 3.03 3.04 3.04 3.05 3.05 3.08 3.08 3.05 3.07 3.07 3.06 3.04 3.07 3.06 3.04 3.06 3.04 3.06 3.06
    总计 8.09 8.08 8.10 8.09 8.09 8.07 8.11 8.09 8.11 8.11 8.09 8.12 8.09 8.11 8.09 8.06 8.11 8.13 8.09 8.11 8.11 8.09 8.10 8.08 8.10 8.10 8.10 8.12 8.10 8.09 8.10 8.10 8.08 8.12 8.10 8.07 8.11 8.09 7.97 8.08 8 10 8.07 8.08 8.11 8.08 8.08 8.09 8.10 8.10 8.10 8.10 8 10 8 09 8.07 8.07 8.09 8 10 8.07 8.09 8.07 809 8.09
    Alm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    Adr 22.36 21.63 25.44 25.62 24.22 19.37 28.43 21.81 35.82 29.63 26.54 31.77 24.64 28.64 25.85 20.46 35.19 48.58 26.14 29.35 29.60 22.76 22.75 21.91 21.23 27.21 26.23 35.74 27.42 27.52 26.09 27.39 20.88 25.79 33.23 19.96 27.73 24.56 39.34 23.50 24.88 19.41 21.81 27.25 22.34 26 10 21.40 26 48 24.85 22.10 2S 89 25.95 24.15 23.99 19 72 22.91 26.10 20.76 20.74 18 45 23.16 22.83
    Grs 76.58 77.37 73.42 73.64 74.52 79.36 70.24 76.98 63.16 69.42 72.17 67.25 74.62 70.67 73.42 78.28 64.00 51.02 72.57 69.58 69.54 76.20 75.81 76.85 77.42 71.84 72.54 63.59 71.72 71.72 72.75 71.43 78.41 73.10 65.89 78.79 70.96 74.11 41.64 75.58 74.15 79.42 76.88 71.15 76.70 73.02 77.26 72.51 74.24 76.60 70.06 72.99 74.90 74.86 79.19 75.59 73.04 77.96 78.15 80.29 75.66 76.09
    pyp 0.58 0.70 0.69 0.44 O.SO 0.80 0.87 0.88 0.62 0.56 0.S5 0.66 0.46 0.58 0.56 0.81 0.61 0.29 0.89 0.73 0.55 0.89 1.14 0.76 0.87 0.61 0.83 0.39 0.53 0.72 0.73 0.72 0.58 0.78 0.69 0.88 0.68 0.88 18.49 0.66 0.61 0.96 0.96 0.64 0.64 0.58 0.97 0.57 0.65 0.98 0.56 0.64 0.82 0.87 0.82 0.96 0.60 0.87 0.84 0.86 0.62 0.68
    Sps 0.49 0.30 0.42 0.31 0.46 0.27 0.47 0.33 0.40 0.39 0.36 0.32 0.29 0.11 0.17 0.33 0.20 0.12 0.28 0.13 0.31 0.15 0.30 0.34 0.48 0.31 0.41 0.28 0.34 0.05 0.43 0.37 0.13 0.20 0.15 0.15 0.63 0.45 0.24 0.19 0.22 0.21 0.26 0.54 0.28 0.31 0.37 0 38 0.23 0.27 0.48 0.38 0 14 0.27 0.13 0.54 0 15 0 28 0.28 0.40 0.47 0.40
    Uvt 0.00 0.00 0.03 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.01 0.00 0.12 0.00 0.00 0.13 0.22 0.00 0.00 0.00 0.14 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.13 0.03 0.22 0.00 0.00 0.30 0.08 0 13 0.00 0.09 0.42 0.04 0.00 0.00 0.06 0.03 0.05 0.01 0.04 0.00 0.00 0.14 0.00 0 12 0.12 0.00 0.00 0.10 0.00
    注:Alm—铁铝榴石;Prp—镁铝榴石;Sps—锰铝榴石;Grs—钙铝榴石;Adr—钙铁榴石;Uvt—钙铬榴石
    下载: 导出CSV

    表 2  Dawson-Stephens分类石榴子石产状及特征氧化物平均值[10]

    Table 2.  Oxide averages of garnets of different modes of occurrence in Dawson-Stephens classification

    %
    编号 矿物名称 TiO2 Cr2O3 FeO MgO CaO 产状
    1 钛-镁榴石 0.58 1.34 9.32 20.0 4.82 K, GL, GOW, D
    2 高钛-镁铝榴石 1.09 0.91 9.84 20.3 4.52 K
    3 钙-镁铝榴石-铁铝榴石 0.31 0.30 16.49 13.35 6.51 K, GL, GOW, EC, D
    4 钛、钙、镁-铁铝榴石 0.90 0.08 17.88 9.87 9.41 K, EC, D
    5 镁-铁铝榴石 0.05 0.03 28.23 7.83 2.44 K, EC, D
    6 镁铝榴石-钙铝榴石-铁铝榴石 0.24 0.27 10.77 10.38 14.87 GP, EC, GR
    7 铁-镁-钙铬榴石-钙铝榴石 0.29 11.52 5.25 8.61 21.60 K, GS
    8 铁-镁-钙铝榴石 0.25 0.04 6.91 4.69 24.77 GR
    9 铬镁铝榴石 0.27 3.47 8.01 20.01 5.17 K, GL, GOW, GH, EC, D
    10 低钙-铬-镁铝榴石 0.04 7.73 6.11 23.16 2.13 K, GS, D
    11 钙铬榴石-镁铝榴石 0.51 9.55 7.54 15.89 10.27 K, GL, GWH, D
    12 镁铬榴石-钙铬榴石-镁铝榴石 0.18 15.94 7.47 15.40 9.51 K, GS
    注:K—金伯利岩;GL—石榴二辉橄榄岩;GH—石榴方辉橄榄岩;GD—石榴纯橄岩;GS—石榴蛇纹岩;GOW—石榴橄榄二辉岩;GP—石榴辉石岩;GWH—石榴易剥橄榄岩;GR—辉榴蓝晶岩;EC—榴辉岩;D—金刚石包体
    下载: 导出CSV

    表 3  栏杆含金刚石母岩中石榴子石分子式

    Table 3.  Formula characteristics and types of garnet in kimberlite from Lan'gan

    石榴子石名称 代表样品分子式 件数
    钙铁镁-铝铁榴石 (Ca3.06Fe0.06Mg0.02)3.14(Al1.48Fe0.43Ti0.02)1.93Si2.95O12 57
    超硅钙铁榴石 (Ca3.07Fe0.11Mg0.02)3.2(Al1.2Fe0.67Ti0.03Si0.05)1.95Si3O12 1
    (Ca3.07Fe0.13Mg0.01)3.21(Al1.21Fe0.67Ti0.02Si0.05)1.95Si3O12 1
    (Ca3.08Fe0.19Mg0.01)3.28(Al0.96Fe0.88Si0.11)1.95Si3O12 1
    (Ca2.616Mg0.45Fe0.01)3.07(Al1Fe0.64Ti0.02Mn0.01Si0.31)1.98Si3O12 1
    钙铁镁-铝铁锰铬榴石 (Ca3.03Fe0.11Mg0.02)3.17(Al1.48Fe0.53Ti0.02Mn0.02Cr0.01)2.06Si2.94O12 1
    下载: 导出CSV
  • [1]

    庄继翔.宿州市栏杆-褚栏地区金刚石勘查中磁异常特征研究与找矿[J].安徽地质, 2013, 23(2):123-125. doi: 10.3969/j.issn.1005-6157.2013.02.010

    [2]

    黄先觉.金刚石原生矿床类型及安徽省金刚石找矿前景分析[J].安徽地质, 2012, 22(2):103-105. http://d.old.wanfangdata.com.cn/Periodical/ahdz201202008

    [3]

    蔡逸涛, 陈国光, 张洁, 等.安徽栏杆地区橄榄辉长岩地球化学特征及其与金刚石成矿的关系[J].资源调查与环境, 2014, 35(4):245-253. doi: 10.3969/j.issn.1671-4814.2014.04.002

    [4]

    蔡逸涛, 张洁.安徽栏杆含金刚石母岩岩石学研究[J].矿床地质, 2014, 33(supp.):363-365. http://d.old.wanfangdata.com.cn/Conference/8450514

    [5]

    张岳桥, 董树文.郯庐断裂带中生代构造演化史:进展与新认识[J].地质通报, 2008, 27(9):1371-1390. doi: 10.3969/j.issn.1671-2552.2008.09.002 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20080902&flag=1

    [6]

    侯明金, 王永敏, Mercier J, 等.郯庐断裂带(安徽部分)动力学演化及其构造意义[J].地质通报, 2003, 22(2):36-43. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20030220&flag=1

    [7]

    姚仲伯.安徽省区域地质概要[J].中国区域地质, 1986, (4):309-312. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005065606

    [8]

    张洁, 蔡逸涛, 董钟斗, 等.安徽栏杆金刚石矿物特征及其寄主母岩地球化学特征研究[J].宝石和宝石学杂志, 2015, 17(5):1-11. doi: 10.3969/j.issn.1008-214X.2015.05.001

    [9]

    蔡逸涛, 杨献忠, 康丛轩.国内外金刚石成因认识现状[J].华东地质, 2017, 38(Supp.):95-102.

    [10]

    Dawson J B, Stephens W E. Statistical Classification of Garnets from Kimberlite and Associated Xenoliths[J]. The Journal of Geology, 1975, 83(5):589-607. doi: 10.1086/628143

    [11]

    Jamtvert B, Ragnarsdottir K, Wood B. On the origin of zoned grossular-andradite garnets in hydrothermal systems[J]. European Journal of Mineralogy, 1995, 7(6):1399-1410. doi: 10.1127/ejm/7/6/1399

    [12]

    Jamtvert B, Wogelius R, Fraser D. Zonation patterns of skarn garnets-records of hydrothermal system evolution[J]. Geology, 1993, 21(2):113-116. doi: 10.1130/0091-7613(1993)021<0113:ZPOSGR>2.3.CO;2

    [13]

    张安棣, 谢锡林, 郭立鹤.金刚石找矿指示矿物研究及数据库[M].北京:科学技术出版社, 1991.

    [14]

    Akaogi M, Akimoto S. Pyroxene-garnet solid-solution equilibria in the systems Mg4Si4O12-Mg3Al2Si3O12 and Fe4Si4O12-Fe3Al2Si3O12 at high pressures and temperatures[J]. Physics of the Earth and Planetary Interiors, 1977, 15(1):90-106. doi: 10.1016/0031-9201(77)90013-9

    [15]

    Smith J V, Mason B. Pyroxene-Garnet Transformation in Coorara Meteorite[J]. Science, 1970, 168(3933):832-833. doi: 10.1126/science.168.3933.832

    [16]

    Tappert R, Stachel T, Harris J W, et al. Subducting oceanic crust:The source of deep diamonds[J]. Geology, 2005, 33(7):565-568. doi: 10.1130/G21637.1

    [17]

    Ringwood A E, Major A, Ringwood A E, et al. High pressure transformations in pyroxenes[J]. Earth Planet Science Letters, 1966, 1:351. doi: 10.1016/0012-821X(66)90023-9

    [18]

    Ringwood A E, Major A. Synthesis of majorite and other high pressure garnet and perovskites[J]. Earth Planet Science Letters, 1971, 12:411-418. doi: 10.1016/0012-821X(71)90026-4

    [19]

    Ben H, Cayzer N. Decompression and unmixing of crystals included in diamonds from the mantle transition zone[J]. Physics and Chemistry of Minerals, 2007, 34(9):647-656. doi: 10.1007/s00269-007-0178-2

    [20]

    Tappert R, Foden J, Stachel T, et al. Deep mantle diamonds from South Australia:A record of Pacific subduction at the Gondwanan margin[J]. Geology, 2009, 37(1):43-46. doi: 10.1130/G25055A.1

    [21]

    Tappert R, Stachel T, Harris J W, et al. Mineral inclusions in diamonds from the Panda kimberlite, Slave Province, Canada[J]. European Journal of Mineralogy, 2005, 17(3):423-440. doi: 10.1127/0935-1221/2005/0017-0423

    [22]

    Stachel T, Brey G P, Harris J W. Inclusions in sublithospheric diamonds:glimpses of deep Earth[J]. Elements, 2005, 1(2):73-78. doi: 10.2113/gselements.1.2.73

    [23]

    Roermund V, Herman L, Drury M R. Ultra-high pressure (P > 6 GPa) garnet peridotites in Western Norway:exhumation of mantle rocks from > 185 km depth[J]. Terra Nova, 1998, 10:295-301. doi: 10.1046/j.1365-3121.1998.00213.x

    [24]

    Scambelluri M, Pettke T, Van Roermund H L M. Majoritic garnets monitor deep subduction fluid flow and mantle dynamics[J]. Geology, 2008, 36(01):59-62. doi: 10.1130/G24056A.1

    [25]

    Collerson K D, Hapugoda S, Kamber B S, et al. Rocks from the Mantle Transition Zone:Majorite-Bearing Xenoliths from Malaita, Southwest Pacific[J]. Science, 2000, 288(5469):1215-1223. doi: 10.1126/science.288.5469.1215

    [26]

    Neal C R, Haggerty S E, Sautter V. "Majorite" and "silicate perovskite" mineral compositions in xenoliths from Malaita[J]. Science, 2001, 292(5519):1015. doi: 10.1126/science.292.5519.1015a

    [27]

    Ye K, Cong B, Ye D. The possible subduction of continental material to depths greater than 200km[J]. Nature, 2000, 407:734-736. doi: 10.1038/35037566

    [28]

    Song S, Zhang L, Niu Y. Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW China[J]. American Mineralogist, 2015, 89(8/9):1330-1336. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=am-2004-8-922

    [29]

    刘良, 陈丹玲, 张安达.阿尔金超高压(>7GPa)片麻状(含)钾长石榴辉石岩——石榴子石出溶单斜辉石的证据[J].中国科学(D辑), 2005, 35(02):105-114. http://cdmd.cnki.com.cn/Article/CDMD-10697-2006090134.htm

    [30]

    牛贺才, 张海祥, 单强, 等.扎河坝石榴辉石岩中超硅-超钛石榴子石的发现及其地质意义[J].科学通报, 2007, (18):2169-2174. doi: 10.3321/j.issn:0023-074x.2007.18.012

    [31]

    陆琦, 刘惠芳, 肖平, 等.中国辽宁金刚石中高硅钙铁榴石(Majorite)等超高压矿物包裹体的发现及地质意义[J].地质科技情报, 2012, 31(5):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201204649172

    [32]

    Van Roermund H L M, Drury M R, Barnhoorn A, et al. Supersilicic garnet microstructures from an orogenic garnet peridotite, evidence for an ultra-deep (>6GPa) origin[J]. Journal of Metamorphic Geology, 2000, 18(2):135-147. doi: 10.1046/j.1525-1314.2000.00251.x

    [33]

    Joswig W, Stachel T, Harris J W, et al. New Ca-silicate inclusions in diamonds-tracers from the lower mantle[J]. Earth and Planetary Science Letters, 1999, 173:1-6. doi: 10.1016/S0012-821X(99)00210-1

    [34]

    Brenker F E, Vincze L, Vekemans B, et al. Detection of a Ca-rich lithology in the Earth's deep (>300km) convecting mantle[J]. Earth and Planetary Science Letters, 2005, 236:579-587. doi: 10.1016/j.epsl.2005.05.021

  • 加载中

(4)

(3)

计量
  • 文章访问数:  404
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2018-05-10
修回日期:  2018-06-15
刊出日期:  2019-01-15

目录