内蒙古东乌旗葛根敖包石英闪长岩岩体年代学、地球化学及其地质意义

向安平, 陈毓川, 佘宏全, 李光明, 李应栩. 内蒙古东乌旗葛根敖包石英闪长岩岩体年代学、地球化学及其地质意义[J]. 地质通报, 2019, 38(9): 1469-1483.
引用本文: 向安平, 陈毓川, 佘宏全, 李光明, 李应栩. 内蒙古东乌旗葛根敖包石英闪长岩岩体年代学、地球化学及其地质意义[J]. 地质通报, 2019, 38(9): 1469-1483.
XIANG Anping, CHEN Yuchuan, SHE Hongquan, LI Guangming, LI Yingxu. Chronology and geochemical characteristics of quartz diorite in Gegen' aobao, Dong Ujimqin Banner, Inner Mongolia, and its geological significance[J]. Geological Bulletin of China, 2019, 38(9): 1469-1483.
Citation: XIANG Anping, CHEN Yuchuan, SHE Hongquan, LI Guangming, LI Yingxu. Chronology and geochemical characteristics of quartz diorite in Gegen' aobao, Dong Ujimqin Banner, Inner Mongolia, and its geological significance[J]. Geological Bulletin of China, 2019, 38(9): 1469-1483.

内蒙古东乌旗葛根敖包石英闪长岩岩体年代学、地球化学及其地质意义

  • 基金项目:
    中国地质调查局项目《四川会理—盐源地区地球物理调查》(编号:DD20190033)
详细信息
    作者简介: 向安平(1986-), 博士, 助理研究员, 矿物学、岩石学、矿床学专业。E-mail:xap2011@sina.cn
  • 中图分类号: P588.12+.2;P597+.3

Chronology and geochemical characteristics of quartz diorite in Gegen' aobao, Dong Ujimqin Banner, Inner Mongolia, and its geological significance

  • 内蒙古东乌旗地区新近发现的葛根敖包铅锌矿,成矿与赋矿岩体石英闪长岩关系密切,对石英闪长岩进行系统的LAICP-MS锆石U-Pb定年及锆石Hf同位素分析,并对石英闪长岩进行主量、微量和稀土元素分析。锆石U-Pb定年结果显示,石英闪长岩2个样品的锆石U-Pb年龄分别为299±1Ma和301±1Ma,均为晚石炭世。岩石主量、微量及稀土元素分析显示,石英闪长岩具有典型的富硅、富碱特征,Na2O/K2O值为1.14~1.93,平均1.39,明显富钠高钾,属高钾钙碱性系列;铝饱和指数A/CNK值为0.79~0.95,为准铝质或铝不饱和花岗岩类;轻、重稀土元素分馏显著,球粒陨石标准化稀土元素配分模式表现为明显的右倾,显示岩浆源区可能有石榴子石残留;并有微弱负Eu异常,δEu=0.80~0.91,δCe=0.89~0.96,均靠近1,指示源区无斜长石残留;同时具低Sr、高Yb特征;并指示高场强元素U、La、Nd、Zr相对富集,而Th、Nb、Sr、P、Ti相对亏损,且大离子亲石元素Rb、Ba、K相对富集,Nb/Ta值低,指示岩浆源区可能为幔源为主。锆石Hf同位素分析显示,εHf(t)值全部为正值,+10.8~+13.6(全部大于10,较高),TDM2介于440~629Ma之间,相对集中,明显大于其锆石U-Pb年龄,其年轻的TDM2年龄和较高的εHf(t)值表明,岩浆中有相当大的幔源物质的贡献。结合区域构造演化,认为葛根敖包石英闪长岩岩浆源区可能为亏损地幔物质部分熔融并在上升过程中受到少量壳源物质的混染,为活动陆缘弧环境的产物。

  • 加载中
  • 图 1  区域构造位置(a)和研究区与成矿带位置关系图(b)

    Figure 1. 

    图 2  葛根敖包区域地质图

    Figure 2. 

    图 图版Ⅰ   

    Figure 图版Ⅰ. 

    图 3  矿区3号勘探线剖面图

    Figure 3. 

    图 4  Cross section along No. 3 exploration line

    Figure 4. 

    图 5  葛根敖包石英闪长岩锆石U-Pb谐和图

    Figure 5. 

    图 6  葛根敖包矿区石英闪长岩SiO2-K2O(a)和A/CNK-A/NK关系图(b)

    Figure 6. 

    图 7  葛根敖包矿区石英闪长岩稀土元素球粒陨石标准化配分曲线(a)和微量元素原始地幔标准化蛛网图(b)

    Figure 7. 

    图 8  葛根敖包矿区U-Pb年龄t-εHf(t)(a)和U-Pb年龄t-176Hf/177Hf(b)对应关系

    Figure 8. 

    图 9  葛根敖包矿区石英闪长岩微量元素构造环境判别图

    Figure 9. 

    表 1  内蒙古达亚纳石英闪长岩LA-ICP-MS锆石U-Th-Pb测试数据

    Table 1.  LA-ICP-MS zircon U-Th-Pb isotopic data for the quartz diorite at Dayana, Inner Mongolia

    样品-测试点号 Th/ U/ Th/U 207PB/235U 207PB/235U 206PB/238U 206PB/238U 206PB/238U 206PB/238U
    10-6 10-6 比值 比值 年龄/Ma
    ZKI3
    ZK13-1 973.1 810.6 1.20 0.4100 0.0106 0.0375 0.0004 237 2
    ZK13-2 208.8 165.8 1.26 0.3433 0.0119 0.0485 0.0005 306 3
    ZK13-3 188.2 135.8 1.39 0.3365 0.0125 0.0486 0.0005 306 3
    ZK13-4 1101.8 459.8 2.40 0.4694 0.0256 0.0507 0.0010 319 6
    ZK13-5 373.8 659.1 0.57 0.3378 0.0075 0.0474 0.0003 298 2
    ZK13-6 644.2 391.6 1.64 0.3378 0.0083 0.0485 0.0004 305 2
    ZKI3-7 467.7 245.1 1.91 0.3525 0.0105 0.0473 0.0004 298 3
    ZK13-8 196.3 170.5 1.15 0.6362 0.0354 0.0473 0.0009 298 6
    ZK13-9 1054.7 602.3 1.75 0.3432 0.0071 0.0474 0.0003 298 2
    ZK13-10 1303.2 744.1 1.75 0.3395 0.0077 0.0475 0.0004 299 2
    ZK13-11 3030.8 927.6 3.27 2.5813 0.0762 0.0671 0.0009 419 5
    ZK13-12 714.8 331.7 2.15 0.6590 0.0198 0.0522 0.0006 328 4
    ZK13-13 457.1 602.0 0.76 0.3480 0.0068 0.0477 0.0004 300 2
    ZK13-14 1407.2 584.2 2.41 0.3459 0.00X2 0.0483 0.0005 304 3
    ZK13-15 885.2 781.4 1.13 0.3348 0.0064 0.0477 0.0004 301 3
    ZK13-I6 699.9 422.9 1.65 0.3362 0.0077 0.Q480 0.0005 302 3
    ZK13-17 332.2 145.9 2.28 0.5228 0.0338 0.0502 0.0011 316 6
    ZK13-18 97.7 89.6 1.09 0.3709 0.0303 0.0488 0.0013 307 8
    ZK13-19 303.7 294.8 1.03 0.3578 0.0107 0.0488 0.0006 307 3
    ZK13-20 1313.4 626.1 2.10 0.3603 0.0077 0.0486 0.0005 306 3
    ZK400
    ZK400-1 108.9 83.3 1.31 0.3648 0.0233 0.0483 0.0009 304 6
    ZK400-2 124.1 70.5 1.76 0.3593 0.0526 0.0473 0.0027 298 16
    ZK400-3 133.3 121.3 1.10 0.3476 0.0107 0.0466 0.0004 293 2
    ZK400-4 220.7 105.9 2.08 0.3548 0.0343 0.0487 0.0014 307 9
    ZK400-5 83.2 70.4 1.18 0.3488 0.0239 0.0476 O.OOOS 300 5
    ZK400-6 89.8 390.5 0.23 3.1830 0.0388 0.2126 0.0018 1243 9
    ZK400-7 101.9 341.2 0.30 1.4239 0.0170 0.1495 0.0009 898 5
    ZK400-8 152.5 152.6 1.00 0.3370 0.0116 0.0480 0.0007 302 4
    ZK400-9 42.9 234.5 0.18 1.5537 0.0286 0.1442 0.0011 868 6
    ZK400-10 190.2 104.9 1.81 0.3315 0.0117 0.0468 0.0005 295 3
    ZK400-11 45.2 27.9 1.62 0.3946 0.0650 0.0444 0.0019 280 11
    ZK400-12 65.8 48.3 1.36 0.3567 0.0177 0.0469 0.0007 296 4
    ZK400-13 228.5 192.4 1.19 0.3476 0.0091 0.0476 0.0004 300 3
    ZK400-14 137.4 103.2 1.33 0.3473 0.0119 0.0478 0.0005 301 3
    ZK400-15 133.4 150.3 0.89 0.3533 0.0119 0.0482 0.0005 303 3
    ZK400-16 98.8 57.6 1.72 0.3547 0.0199 0.0471 0.0008 297 5
    ZK400-17 435.5 200.4 2.17 1.0475 0.0237 0.0487 0.0005 306 3
    ZK400-18 158.0 78.7 2.01 0.3382 0.0131 0.0476 0.0005 300 3
    ZK400-19 191.3 93.4 2.05 0.3405 0.0192 0.0478 0.0008 301 5
    ZK400-20 448.0 337.3 1.33 0.3383 0.0112 0.0471 0.0005 297 3
    注:带删除线数据表示测试数据有问题,不可利用
    下载: 导出CSV

    表 2  葛根敖包石英闪长岩主量、微量和稀土元素分析数据

    Table 2.  Major, trace elements and REE composition of the quartz diorite at the Gegen'aobao

    元素 GGAB-ZK301-243 GGAB-ZK301-332 GGAB-ZK001-400 GGAB-ZK001-177 GGAB-ZK001-13 GGAB-ZK008-205 GGAB-ZK008-210 GGAB-ZK008-394
    SiO2 65.01 64.95 64.37 65.84 60.13 64.43 64.62 63.15
    Al2O3 15.93 15.81 16.14 16.11 15.30 15.85 15.24 15.80
    Fe2O3 1.47 1.05 1.16 1.18 2.18 1.29 1.21 1.62
    CaO 2.74 3.11 3.22 2.67 5.37 3.78 3.85 3.39
    MgO 1.39 1.36 1.22 1.09 2.07 1.55 1.46 1.67
    K2O 3.88 2.77 3.88 3.80 3.19 3.13 3.10 3.24
    Na2O 4.62 5.34 4.43 4.91 3.71 4.45 4.86 4.64
    MnO 0.13 0.14 0.15 0.12 0.26 0.13 0.21 0.34
    P2O5 0.24 0.28 0.27 0.22 0.28 0.27 0.26 0.27
    TiO2 0.99 1.03 0.98 0.94 1.05 0.93 0.95 0.95
    FeO 3.22 3.10 3.52 3.10 4.23 3.81 3.81 3.46
    烧失量 1.00 1.63 1.14 0.73 2.38 0.99 0.35 1.45
    总计 100.61 100.57 100.46 100.71 100.14 100.60 99.92 99.97
    A/CNK 0.95 0.91 0.93 0.95 0.79 0.90 0.83 0.91
    Na2O+K2O 8.49 8.11 8.30 8.71 6.90 7.58 7.96 7.88
    N2O/K2O 1.19 1.93 1.14 1.29 1.16 1.42 1.57 1.43
    La 20.31 15.71 19.53 18.95 20.87 24.56 22.17 27.54
    Ce 51.09 41.67 47.51 49.62 45.77 54.30 49.27 57.47
    Pr 8.74 7.17 8.03 8.66 7.53 8.42 7.87 8.64
    Nd 36.49 31.19 33.44 36.26 29.89 34.10 32.06 33.54
    Sm 8.31 7.38 7.64 8.18 6.76 7.24 7.10 7.13
    Eu 2.25 2.17 2.13 2.08 1.87 1.97 1.90 2.00
    Gd 8.21 6.91 7.03 7.50 6.19 6.90 6.53 6.71
    Tb 1.21 1.07 1.07 1.18 0.98 1.07 1.02 0.98
    Dy 6.98 5.98 6.40 6.74 5.50 5.99 5.64 5.61
    Ho 1.35 1.21 1.21 1.36 1.10 1.19 1.12 1.11
    Er 3.88 3.44 3.44 3.89 3.07 3.27 3.19 3.00
    Tm 0.57 0.50 0.55 0.59 0.46 0.50 0.47 0.45
    Yb 3.65 3.23 3.37 3.86 3.09 3.23 3.14 3.04
    Lu 0.54 0.45 0.50 0.57 0.44 0.50 0.46 0.46
    SREE 153.58 128.06 141.85 149.42 133.52 153.23 141.94 157.68
    LREE 127.19 105.28 118.27 123.74 112.69 130.59 120.36 136.33
    HREE 26.38 22.78 23.58 25.68 20.83 22.64 21.57 21.35
    LREE/HREE 4.82 4.62 5.02 4.82 5.41 5.77 5.58 6.38
    LaN/YbN 3.99 3.49 4.15 3.52 4.85 5.46 5.07 6.51
    δEu 0.82 0.91 0.87 0.80 0.87 0.84 0.84 0.87
    δCe 0.94 0.96 0.93 0.95 0.89 0.92 0.91 0.91
    Li 10.3 17.0 11.1 16.2 14.8 17.4 10.7 15.1
    Be 2.61 1.77 2.04 2.67 1.47 1.89 1.94 1.95
    V 64.93 69.24 69.13 62.65 127.80 83.89 77.59 76.44
    Cr 26.01 18.07 22.87 19.09 22.13 16.92 17.19 16.09
    Co 5.01 5.09 4.92 4.10 10.0 7.70 5.83 7.86
    Ni 11.85 2.28 1.79 1.73 5.28 2.51 2.38 3.26
    Cu 9.68 14.1 35.2 8.40 31.1 9.73 13.5 15.0
    Zn 49.67 70.33 115.90 77.70 171.10 63.98 68.49 66.88
    Ga 19.73 18.76 18.75 18.87 19.92 18.68 18.94 18.63
    Rb 77.65 55.95 86.50 83.34 67.68 66.27 60.49 67.22
    Sr 404.80 368.30 288.60 393.30 432.10 461.20 435.20 490.80
    Y 29.14 25.46 25.84 28.74 23.08 25.51 24.13 24.22
    Zr 247.70 232.08 238.77 263.69 150.60 216.58 202.76 208.08
    Nb 14.01 12.73 11.26 13.52 9.72 10.88 10.97 11.01
    Cs 2.25 1.96 1.65 7.92 2.21 6.83 9.78 2.54
    Hf 5.31 4.91 4.98 7.00 4.43 5.55 5.28 4.78
    Ba 977.70 806.50 773.10 978.30 620.30 747.40 765.00 873.80
    Ta 1.11 0.90 0.82 0.92 0.74 0.74 0.76 0.81
    Pb 12.27 12.48 40.01 16.87 60.56 10.11 14.95 14.04
    Th 9.57 7.85 8.16 9.18 6.42 7.01 6.82 7.01
    U 2.95 2.33 2.65 3.13 2.19 2.53 2.38 2.30
    Nb/Ta 12.62 14.11 13.71 14.66 13.19 14.72 14.49 13.64
    Rb/Sr 0.19 0.15 0.30 0.21 0.16 0.14 0.14 0.14
    注:主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV

    表 3  葛根敖包石英闪长岩锆石Hf同位素分析数据

    Table 3.  Zircon Lu-Hf isotopic results for the quartz diorite at the Gegen'aobao deposit

    测点号 t/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf εHf(0) εHf(t) TdM1 TdM2 fu-Hf
    ZK13-02 306 0.057253 0.001956 0.282948 0.000018 6.2 12.6 442 517 -0.94
    ZK13-03 306 0.050751 0.001746 0.282940 0.000018 5.9 12.3 451 533 -0.95
    ZK13-05 298 0.070979 0.002803 0.282949 0.000022 6.3 12.3 451 530 -0.92
    ZK13-06 305 0.088795 0.003118 0.282906 0.000020 4.7 10.8 520 629 -0.91
    ZK13-07 298 0.134357 0.004649 0.282922 0.000024 5.3 10.9 519 616 -0.86
    ZK13-09 298 0.094177 0.003372 0.282925 0.000025 5.4 11.3 495 593 -0.90
    ZK13-10 299 0.086160 0.003107 0.282935 0.000018 5.7 11.7 477 567 -0.91
    ZK13-13 300 0.050320 0.002030 0.282939 0.000018 5.9 12.1 456 542 -0.94
    ZK13-14 304 0.055622 0.002038 0.282960 0.000017 6.6 12.9 425 493 -0.94
    ZK13-15 301 0.035758 0.001459 0.282914 0.000013 5.0 11.3 485 592 -0.96
    ZK13-16 302 0.037999 0.001492 0.282942 0.000015 6.0 12.4 445 528 -0.96
    ZK13-18 307 0.072069 0.002644 0.282946 0.000020 6.1 12.4 454 531 -0.92
    ZK13-19 307 0.063193 0.002407 0.282916 0.000017 5.1 11.4 495 596 -0.93
    ZK13-20 306 0.035327 0.001413 0.282925 0.000013 5.4 11.8 469 564 -0.96
    ZK400-01 304 0.034900 0.001294 0.282961 0.000019 6.7 13.1 415 480 -0.96
    ZK400-02 298 0.048393 0.001648 0.282920 0.000021 5.2 11.5 478 581 -0.95
    ZK400-03 293 0.029959 0.001137 0.282960 0.000019 6.7 12.9 415 487 -0.97
    ZK400-04 307 0.037745 0.001360 0.282906 0.000021 4.7 11.2 495 605 -0.96
    ZK400-05 300 0.031210 0.001135 0.282907 0.000016 4.8 11.1 491 604 -0.97
    ZK400-08 302 0.035079 0.001330 0.282914 0.000016 5.0 11.4 483 589 -0.96
    ZK400-10 295 0.038373 0.001500 0.282961 0.000018 6.7 12.9 418 489 -0.95
    ZK400-12 296 0.055173 0.002088 0.282985 0.000017 7.5 13.6 389 440 -0.94
    ZK400-13 300 0.067177 0.002427 0.282955 0.000017 6.5 12.6 437 511 -0.93
    ZK400-14 301 0.048535 0.001808 0.282961 0.000017 6.7 12.9 421 489 -0.95
    ZK400-16 297 0.071620 0.002692 0.282984 0.000022 7.5 13.5 398 451 -0.92
    ZK400-18 300 0.058848 0.002119 0.282945 0.000020 6.1 12.3 448 530 -0.94
    ZK400-19 301 0.053619 0.001883 0.282936 0.000018 5.8 12.0 459 548 -0.94
    ZK400-20 297 0.065200 0.002324 0.282922 0.000019 5.3 11.4 485 587 -0.93
    下载: 导出CSV
  • [1]

    Wang T, Guo L, Zhang L, et al. Timing and evolution of JurassicCretaceous granitoid magmatisms in the Mongol-Okhotsk belt and adjacent areas, NE Asia:implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings[J]. Journal of Asian Earth Sciences, 2015, 97:365-392. doi: 10.1016/j.jseaes.2014.10.005

    [2]

    Xu B. The Central Asian Orogenic Belt in northern China:Preface. Journal of Asian Earth Sci., 2015, 97:179-182. doi: 10.1016/j.jseaes.2014.11.019

    [3]

    Xu B, Song S, Nie F. The Central Asian Orogenic Belt in northern China:Preface[J]. Journal of Asian Earth Sciences, 2015, 97:179-182. doi: 10.1016/j.jseaes.2014.11.019

    [4]

    Xu B, Zhao P, Wang Y Y, et al. The pre-Devonian tectonic framework of Xing'an-Mongolia orogenic belt (XMOB) in north China. Journal of Asian Earth Sciences. 2015c, 97:183-196. doi: 10.1016/j.jseaes.2014.07.020

    [5]

    Si H J, Bagas L, Peng H, et al. Muscovite Ar-Ar, molybdenite ReOs and zircon U-Pb ages and Sr-Nd-Hf isotopes of the highly fractionated granite-related Shamai tungsten deposit in East Inner Mongolia, China:implications for the timing of mineralization and ore genesis[J]. Lithos, 2015, in publication. https://www.sciencedirect.com/science/article/pii/S0024493715004739

    [6]

    Mao J W, Zhang Z C, Zhang Z H, et al. Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the Northern Qilian Mountains and its geological significance[J]. Geochimca et Cosmochimica Acta, 1999, 63(11/12):1815-1818. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eb7204df38315b7dd7fcab6bc9a0e8bf

    [7]

    Mao J W, Wang Y T, Zhang Z H, et al. Geodynamic settings of Mesozoic large-scale mineralization in North China and adjacent areas[J]. Science China Earth Sciences, 2003, 46(8):839-851. http://cn.bing.com/academic/profile?id=0ed80e14c84d8dcb8f89cfe69ac6e89e&encoded=0&v=paper_preview&mkt=zh-cn

    [8]

    聂凤军, 胡朋, 江思宏, 等.中蒙边境沙麦-玉古兹尔地区钨和钨(钼)矿床地质特征, 形成时代和成因机理[J].地球学报, 2010, 3:383-394. http://d.old.wanfangdata.com.cn/Periodical/dqxb201003012

    [9]

    佘宏全, 李进文, 向安平, 等.大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系[J].岩石学报, 2012, 28(2):571-594. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201202018

    [10]

    向安平, 杨郧城, 李贵涛, 等.黑龙江多宝山斑岩Cu-Mo矿床成岩成矿时代研究[J].矿床地质, 2012, 6:1237-1248. doi: 10.3969/j.issn.0258-7106.2012.06.009

    [11]

    向安平, 佘宏全, 陈毓川, 等.内蒙古红花尔基钨钼矿云英岩化白云母Ar-Ar定年及其地质意义[J].岩矿测试, 2016, 1:108-116. http://d.old.wanfangdata.com.cn/Periodical/ykcs201601018

    [12]

    Li W, Hu C, Zhong R, et al. U-Pb, 39Ar/40Ar geochronology of themetamorphosed volcanic rocks of the Bainaimiao Group in centralInner Mongolia and its implications for ore genesis and geodynamic setting[J]. Asian Earth Journal of Sciences, 2015, 97:251-259. doi: 10.1016/j.jseaes.2014.06.007

    [13]

    Wu G, Chen Y C, Sun F Y, et al. Geochronology, geochemistry, and Sr-Nd-Hf isotopes of the early Paleozoic igneous rocks in the Duobaoshan area, NE China, and their geological significance[J]. Journal of Asian Earth Sciences, 2015, 97:229-250. doi: 10.1016/j.jseaes.2014.07.031

    [14]

    Wang F, Xu W L, Xu Y G, et al. Late Triassic bimodaligneous rocks in eastern Heilongjiang Province, NE China:implications for theinitiation of subduction of the Paleo-Pacific Plate beneath Eurasia[J]. Journal of Asian Earth Sciences, 2015, 97:406-423. doi: 10.1016/j.jseaes.2014.05.025

    [15]

    Wang Z Z, Han B F, Feng L X, et al Geochronology, geochemistry andorigins of the Paleozoic-Triassic plutons in the Langshan area, western InnerMongolia, China[J]. Journal of Asian Earth Sciences, 2015, 97:337-351. doi: 10.1016/j.jseaes.2014.08.005

    [16]

    Wang Z W, Pei F P, Xu W L, et al. Geochronology andgeochemistry of Late Devonian and early Carboniferous igneous rocks of centralJilin Province, NE China:implications for the tectonic evolution of the eastern Central Asian Orogenic Belt[J]. Asian Earth Sci., 2015, 97:260-278. doi: 10.1016/j.jseaes.2014.06.028

    [17]

    Kravchinsky V A, Konstantinow K M, Cogne J P. Palaeomagnetic study of Vendian and Early Cambrian rocks of South Siberia and Central Mongolia:was the Siberian platform assembled at this time?[J]. Precambrian Research, 2001, 110:61-92. doi: 10.1016/S0301-9268(01)00181-4

    [18]

    Cogne J P, Kravchinsky V A, Halim N, et al. Late Jurassic-Early Cretaceous closure of the Mongol-Okhoysk Ocean demonstrated by new Mesozoic palaeomagnetic results from the Trans-Baikal area (SE Siberian)[J]. Geophysical Journal International, 2005, 163:823-832. http://cn.bing.com/academic/profile?id=5826d47d1b5ba9424da841a6150ab675&encoded=0&v=paper_preview&mkt=zh-cn

    [19]

    Metelkin D V, Gordienko I V, Klimuk V S. Paleomagnetism of Upper Jurassic basalts from Transbaikalia:new data on the time of closure of the Mongol-Okhotsk Ocean and Mesozoic intraplate tectonics of Central Asia[J]. Russian Geology and Geophysics, 2007, 48:825-834. doi: 10.1016/j.rgg.2007.09.004

    [20]

    宋彪, 张玉海, 刘敦一.微量原位分析仪器SHRIMP的产生与锆石同位素地质年代学[J].质谱学报, 2002, (1):58-62. doi: 10.3969/j.issn.1004-2997.2002.01.011

    [21]

    Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257:34-43. doi: 10.1016/j.chemgeo.2008.08.004

    [22]

    Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the TransNorth China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 2010, 51:537-571. doi: 10.1093/petrology/egp082

    [23]

    Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55:1535-1546. doi: 10.1007/s11434-010-3052-4

    [24]

    侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J].矿床地质, 2009, 4:481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010

    [25]

    Sláma J, Kosler J, Condon D J.Plesovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249:1-35. doi: 10.1016/j.chemgeo.2007.11.005

    [26]

    侯可军. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J].岩石学报, 2007, 23(10):2595-2604 doi: 10.3969/j.issn.1000-0569.2007.10.025

    [27]

    Morel M L A, Nebel O, Nebel-Jacobsen Y J. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS[J]. Chemical Geology, 2008, 255:231-235. doi: 10.1016/j.chemgeo.2008.06.040

    [28]

    HofmannAW. Chemical differentiation of the earth:The relationship between mantle, continental crust, and oceanic crust[J]. Earth Planetary Science Letters, 1988, 90(3):297-314. doi: 10.1016/0012-821X(88)90132-X

    [29]

    Kelemen P B, H Angh K, Greenem A R. One view of thegeochemistry of subduction-related magmat ic arcs, with anemphasison primitive andesite and lowercrust[J]. Treatise On Geochemistry, 2003, 3:593-659. https://www.sciencedirect.com/science/article/pii/B0080437516030358

    [30]

    Zhou J B, Wang B, Wilde S A. Geochemistry and U-Pb zircon dating of the Toudaoqiao blueschists inthe Great Xing an Range, northeast China, and tectonic implications[J]. Journal of Asian Earth Sciences, 2015, 97:197-210. doi: 10.1016/j.jseaes.2014.07.011

    [31]

    Han G Q, Liu Y J, Neubauer F. U-Pb age and Hf isotopic data of detrital zircons from the Devonian andCarboniferous sandstones in Yimin area, NE China:New evidences to thecollision timing between the Xing'an and Erguna blocks in eastern segment of Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2015, 97:211-228. doi: 10.1016/j.jseaes.2014.08.006

    [32]

    Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid:Relationships and some implications for crustal evolution[J]. Lithos, 2005, 79(1/2):1-24. http://cn.bing.com/academic/profile?id=7371dfa5724c0893c0b1241c8ad6e418&encoded=0&v=paper_preview&mkt=zh-cn

    [33]

    陈斌, 赵国春, Wi lde S A.内蒙古苏尼特左旗南两类花岗岩同位素年代学及其构造意义[J].地质论评, 2001, 47(4):361-367. doi: 10.3321/j.issn:0371-5736.2001.04.005

    [34]

    鲍庆中, 张长捷, 吴之理, 等.内蒙古白音高勒地区石炭纪石英闪长岩SHRIM P锆石U-Pb年代学及其意义[J].吉林大学学报(地球科学版), 2007, 37(1):15-23. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ200701002.htm

    [35]

    鲍庆中, 张长捷, 吴之理, 等.内蒙古东南部晚古生代裂谷区花岗质岩石锆石SHRIMP U-Pb定年及其地质意义[J].中国地质, 2007, 34(5):790-798. doi: 10.3969/j.issn.1000-3657.2007.05.005

    [36]

    刘建峰, 迟效国, 张兴洲, 等.内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义[J].地质学报, 2009, 3:365-376. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200903006

    [37]

    Zheng Y F, Zhao Z F, Wu F B, et al. Zircon U-Pb age, Hf and O isotope constrains on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogeny[J]. Chem. Geol., 2006, 231:135-158. doi: 10.1016/j.chemgeo.2006.01.005

    [38]

    郑永飞, 陈仁旭, 张少兵, 等.大别山超高压榴辉岩和花岗片麻岩中锆石Lu-Hf同位素研究[J].岩石学报, 2007, 2:317-330. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702012

  • 加载中

(10)

(3)

计量
  • 文章访问数:  936
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2018-05-06
修回日期:  2018-11-12
刊出日期:  2019-09-15

目录