Zircon U-Pb geochronology and petrogenesis of rhyolites in Manketouebo Formation from the Kundu area in Jarud Basin, Inner Mongo-lia
-
摘要:
为研究内蒙古扎鲁特盆地坤都地区晚侏罗世火山岩的构造属性,对研究区内流纹岩开展了锆石U-Pb定年和原位Lu-Hf同位素研究。锆石U-Pb定年结果显示,流纹岩形成于151.2±1.2Ma,属于晚侏罗世。岩石地球化学研究表明,火山岩具高硅富碱、贫镁钙的特征,稀土元素总量为110.38×10-6~138.88×10-6,轻、重稀土元素分馏中等,弱负Eu异常(δEu=0.72~0.98),微量元素特征为富集Cs、Rb、Ba和轻稀土元素,强烈亏损Sr、P、Ti,相对亏损Nb、Ta,εHf(t)值为-10.1~4.9,对应的地壳模式年龄(TDMC)为1192~3639Ma,反映其岩浆来源于元古宙、太古宙地壳物质的部分熔融,之后经历矿物分离结晶作用。通过对比大兴安岭地区同时代岩浆-构造活动,研究区满克头鄂博组流纹岩形成于后造山伸展背景,与蒙古-鄂霍茨克造山后伸展作用有关。
Abstract:Age and tectonic implications of the Late Jurassic rhyolites in Kundu area of Jarud Basin were studied by using zircon U-Pb dating, in situ Lu-Hf isotopic analysis, petrographic analysis and other geochemical methods. LA-ICP-MS zircon U-Pb dating results show that the rhyolites were formed in Late Jurassic, with their formation age being 151.2±1.2Ma. The geochemical study suggests that rhyolites are rich in silicon and alkali, but poor in calcium and magnesia. The REE values of them are between 110.38×10-6 and 138.88×10-6, displaying medium LREE-enriched and HREE-depleted REE patterns[(La/Yb)N=6.24~7.43], with weak negative Eu anomaly (δEu=0.72~0.98). The trace element geochemistry is characterized evidently by enrichment of Cs, Rb, Ba and LREE, strong depletion of Sr, P, Ti, and mediate depletion of Nb, Ta, with the εHf(t) values varying from -10.1~4.9, corresponding to TDMC model ages of 1192~3639Ma, which shows that the rhyolitc magma originated mainly from the partial melting of Proterozoic and Archean crustal rocks, and suffered fractional crystallization. Based on the above result, in combination with previous studies of the contemporaneous magma-tectonic activities in Da Hinggan Mountains, the authors hold that the rhyolites in Manketouebo Formation were formed in an extensional setting related to Mongolia Okhotsk orogenesis
-
Key words:
- Jarud Basin /
- Late Jurassic /
- rhyolites /
- Manketouebo Formation /
- zircon U-Pb dating /
- Hf isotope
-
-
图 1 松辽外围西部盆地群分布图(a)[1]和扎鲁特盆地地质简图(b)
Figure 1.
图 7 满克头鄂博组流纹岩样品SiO2-K2O图解[19]
Figure 7.
图 9 满克头鄂博组流纹岩Sr-Ba(a)与Sr-Rb(b)关系图[31]
Figure 9.
图 12 满克头鄂博组流纹岩Yb-Sr分类图解[5]
Figure 12.
表 1 满克头鄂博组流纹岩LA-ICP-MS锆石U-Th-Pb分析结果
Table 1. LA-ICP-MS zircon U-Th-Pb analytical results of rhyolites in Manketouebo Formation
分析点 含量/10-6 Th/U 同位素比值 年龄/Ma Pb 232Th 238U 207Pb/
206Pb±1σ 207Pb/
235U±1σ 206Pb/
238U±1σ 208Pb/
232Th±1σ 207Pb/
206Pb±1σ 207Pb/
235U±1σ 206Pb/
238U±1σ 208Pb/
232Th±1σ 01 7 93 106 0.88 0.0527 0.0042 0.1619 0.0110 0.0235 0.0006 0.0074 0.0003 322 183 152 10 150 4 148 6 02 11 152 114 1.34 0.0507 0.0040 0.1601 0.0119 0.0235 0.0006 0.0080 0.0003 228 181 151 10 150 4 161 5 03 11 149 107 1.40 0.0478 0.0085 0.1498 0.0303 0.0221 0.0012 0.0068 0.0006 100 378 142 27 141 8 137 12 04 14 201 183 1.09 0.0486 0.0029 0.1598 0.0102 0.0236 0.0005 0.0070 0.0003 128 137 151 9 150 3 141 5 05 26 153 115 1.33 0.1441 0.0096 0.5493 0.0491 0.0261 0.0009 0.0130 0.0008 2277 115 445 32 166 6 261 16 06 8 90 102 0.89 0.0539 0.0056 0.1793 0.0225 0.0231 0.0009 0.0094 0.0009 369 235 167 19 147 6 190 18 07 18 238 225 1.06 0.0497 0.0025 0.1617 0.0080 0.0237 0.0004 0.0079 0.0002 189 119 152 7 151 3 158 4 08 17 244 162 1.51 0.0495 0.0028 0.1593 0.0084 0.0237 0.0005 0.0076 0.0002 169 130 150 7 151 3 153 4 09 4 42 92 0.46 0.0467 0.0037 0.1622 0.0103 0.0236 0.0007 0.0074 0.0005 32 178 153 9 150 5 149 10 10 17 304 205 1.48 0.0505 0.0050 0.1595 0.0142 0.0236 0.0011 0.0061 0.0003 220 215 150 12 150 7 123 5 11 20 303 190 1.59 0.0484 0.0020 0.1613 0.0076 0.0239 0.0004 0.0075 0.0002 117 100 152 7 152 3 152 4 12 18 200 186 1.08 0.0488 0.0023 0.1641 0.0068 0.0237 0.0004 0.0079 0.0002 139 111 154 6 151 2 159 4 13 9 47 71 0.66 0.0524 0.0060 0.1727 0.0184 0.0236 0.0011 0.0078 0.0007 306 263 162 16 150 7 158 13 14 9 77 90 0.86 0.0504 0.0062 0.1914 0.0209 0.0280 0.0013 0.0093 0.0005 213 263 178 18 178 8 187 10 15 16 136 202 0.67 0.0496 0.0020 0.1614 0.0061 0.0238 0.0004 0.0076 0.0002 189 125 152 5 152 2 152 4 16 17 239 227 1.05 0.0499 0.0021 0.1601 0.0067 0.0235 0.0004 0.0072 0.0002 191 100 151 6 149 2 144 4 17 11 109 228 0.48 0.0472 0.0020 0.1528 0.0058 0.0238 0.0004 0.0072 0.0002 58 109 144 5 151 3 146 5 18 24 293 371 0.79 0.0498 0.0018 0.1630 0.0061 0.0239 0.0004 0.0075 0.0002 183 118 153 5 152 2 151 4 19 7 56 59 0.95 0.0536 0.0089 0.2200 0.0374 0.0299 0.0021 0.0143 0.0014 354 341 202 31 190 13 286 28 20 30 425 263 1.62 0.0496 0.0024 0.1585 0.0080 0.0234 0.0006 0.0074 0.0002 176 113 149 7 149 4 150 4 21 10 88 102 0.87 0.0496 0.0053 0.1559 0.0170 0.0233 0.0010 0.0074 0.0004 176 230 147 15 148 6 149 8 22 9 94 137 0.69 0.0489 0.0029 0.1585 0.0088 0.0239 0.0005 0.0086 0.0003 143 137 149 8 152 3 173 7 23 14 182 169 1.08 0.0507 0.0025 0.1593 0.0072 0.0232 0.0006 0.0076 0.0003 228 115 150 6 148 4 154 5 24 31 349 573 0.61 0.0497 0.0016 0.1654 0.0056 0.0242 0.0005 0.0077 0.0002 189 76 155 5 154 3 154 4 25 11 76 139 0.55 0.0512 0.0020 0.2672 0.0100 0.0377 0.0006 0.0132 0.0004 256 89 240 8 238 4 265 8 26 40 572 436 1.31 0.0499 0.0016 0.1654 0.0057 0.0240 0.0004 0.0080 0.0002 191 71 155 5 153 2 160 3 27 16 167 200 0.83 0.0502 0.0022 0.1620 0.0066 0.0237 0.0003 0.0076 0.0002 211 102 152 6 151 2 154 4 28 13 188 159 1.19 0.0494 0.0020 0.1621 0.0063 0.0237 0.0004 0.0075 0.0002 165 96 153 6 151 3 151 4 29 8 59 59 1.01 0.0467 0.0034 0.1797 0.0108 0.0249 0.0007 0.0081 0.0003 35 176 168 9 158 4 163 7 30 9 101 108 0.93 0.0512 0.0040 0.1648 0.0115 0.0243 0.0007 0.0083 0.0003 250 180 155 10 155 5 168 6 表 2 满克头鄂博组流纹岩主量、微量及稀土元素分析结果
Table 2. Major, trace and REE compositions of rhyolites in Manketouebo Formation
样品号 PM421YQ31 PM421YQ34 KD-2 KD-3 KD-4 SiO2 76.61 75.22 75.91 77.53 76.39 TiO2 0.15 0.18 0.19 0.15 0.16 Al2O3 12.24 13.1 12.71 11.7 12.27 Fe2O3 0.93 1.14 1.3 0.85 0.79 FeO 0.22 0.29 0.27 0.27 0.54 MnO 0.03 0.02 0.04 0.07 0.07 MgO 0.35 0.37 0.26 0.002 0.04 CaO 0.32 0.41 0.19 0.08 0.23 Na2O 1.76 2.89 3.43 3.23 3.22 K2O 5.63 4.97 4.86 4.79 5.48 P2O5 0.05 0.06 0.04 0.01 0.03 烧失量 1.29 1.05 0.98 0.95 0.91 总量 99.59 99.72 100.18 99.63 100.13 A/CNK 1.28 1.2 1.13 1.1 1.05 AR 3.86 2.50 3.27 3.43 3.13 Na2O+K2O 7.39 7.86 8.29 8.02 8.7 La 26.77 28.29 27.07 23.77 24.2 Ce 50.35 56.11 51.53 44.8 46.63 Pr 6.32 6.83 6.43 5.53 5.58 Nd 21.98 25.75 22.4 19.61 20.02 Sm 3.89 4.37 4.3 3.52 3.69 Eu 1.21 1.23 0.95 0.88 0.92 Gd 3.55 4.16 3.6 3.07 3.26 Tb 0.52 0.56 0.76 0.6 0.63 Dy 3.36 3.59 3.73 3.13 3.48 Ho 0.71 0.71 0.81 0.64 0.74 Er 1.8 1.99 2.19 1.83 2.17 Tm 0.38 0.37 0.49 0.38 0.42 Yb 2.43 2.57 2.67 2.25 2.61 Lu 0.35 0.35 0.47 0.38 0.43 ∑REE 123.6 136.88 127.4 110.38 114.78 (La/Yb)N 7.42 7.43 6.83 7.13 6.24 (La/Sm)N 4.33 4.07 3.96 4.25 4.13 (Gd/Lu)N 1.27 1.46 0.95 1.01 0.94 δEu 0.98 0.87 0.72 0.8 0.79 Y 21.49 21.79 19.92 17.11 19.9 Rb 144.7 137.58 124.45 109.29 125.56 Ba 1000 795.03 824.49 952.51 1100 Th 4.33 4.87 11.13 10.55 10.52 U 2.19 2.41 2.38 1.65 1.93 Nb 13.3 13.99 14.4 13.03 14.14 Ta 0.75 0.54 1.38 1.19 1.2 Hf 3.07 3.27 4.87 4.44 4.46 Sc 4.85 3.41 4.45 3.63 3.68 Ga 16.61 17.03 15.12 14.24 15.43 Pb 22.97 31.06 30.72 23.72 27.76 Sr 73.36 93.63 84.48 71.57 87.1 Cr 16.75 11.8 13.72 10.85 13.88 Zr 111.2 127.06 128.07 105.25 109.53 Co 2.04 1.76 2.83 2.76 2.53 Ni 2.7 0.87 2.59 6.56 11.2 V 11.67 10.76 13.79 10.59 13.67 Sb 0.23 0.3 0.38 0.21 0.22 Rb/Sr 1.97 1.47 1.47 1.53 1.44 Ti/Y 42.68 49.39 58.39 52.56 48.40 Ti/Zr 8.25 8.47 9.08 8.54 8.87 注:主量元素含量单位为%,微量和稀土元素为10-6 表 3 满克头鄂博组流纹岩锆石Hf同位素分析结果
Table 3. Zircon Hf isotopic compositions of rhyolites in Manketouebo Formation
测点 年龄/Ma 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Lu/177Hf 2σ (176Lu/177Hf)i εHf(0) εHf(t) TDM/Ma TDMc/Ma fLu/Hf 4 150 0.049168 0.000388 0.002152 0.000015 0.282399 0.000045 0.282393 -13.2 -10.1 1244 2546 -0.94 6 147 0.027371 0.000573 0.001190 0.000025 0.282645 0.000038 0.282642 -4.5 -1.4 865 1761 -0.96 8 151 0.039872 0.001256 0.001744 0.000055 0.282438 0.000039 0.282434 -11.8 -8.7 1174 2417 -0.95 9 150 0.018361 0.000418 0.000814 0.000017 0.282821 0.000034 0.282818 1.7 4.9 609 1192 -0.98 13 150 0.018636 0.000201 0.000796 0.000008 0.282808 0.000030 0.282806 1.3 4.5 627 1233 -0.98 17 151 0.026776 0.000433 0.001162 0.000018 0.282782 0.000023 0.282779 0.3 3.5 670 1319 -0.96 19 190 0.032803 0.000714 0.001378 0.000028 0.282904 0.000047 0.282899 4.7 8.7 499 880 -0.96 22 152 0.024753 0.000163 0.001047 0.000008 0.282518 0.000031 0.282515 -9.0 -5.8 1040 2157 -0.97 24 154 0.032726 0.000341 0.001349 0.000012 0.282720 0.000040 0.282716 -1.8 1.4 762 1515 -0.96 25 238 0.051298 0.000561 0.002218 0.000025 0.282450 0.000034 0.282440 -11.4 -6.5 1173 2282 -0.93 26 153 0.062658 0.000703 0.002614 0.000029 0.282780 0.000042 0.282772 0.3 3.4 700 1336 -0.92 29 158 0.040499 0.000318 0.001729 0.000014 0.282710 0.000039 0.282705 -2.2 1.1 784 1544 -0.95 30 155 0.041874 0.000374 0.001793 0.000018 0.282598 0.000044 0.282593 -6.1 -2.9 946 1905 -0.95 -
[1] 陈树旺, 丁秋红, 郑月娟, 等.松辽盆地外围新区、新层系——油气基础地质调查进展与认识[J].地质通报, 2013, 32(8):1147-1158. doi: 10.3969/j.issn.1671-2552.2013.08.002 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20130802&flag=1
[2] 林强.东北亚中生代火山岩研究若干问题的思考[J].世界地质, 1999, 18(2):14-22. http://www.cnki.com.cn/Article/CJFDTotal-SJDZ902.002.htm
[3] 吴福元, 曹林.东北地区的若干重要基础地质问题[J].世界地质, 1999, 18(2):1-13. http://d.old.wanfangdata.com.cn/Periodical/gjsdz201304016
[4] 葛文春, 林强, 孙德有, 等.大兴安岭中生代两类流纹岩成因的地球化学研究[J].地球科学(中国地质大学学报), 2000, 25(2):172-178. http://d.old.wanfangdata.com.cn/Periodical/dqkx200002012
[5] 张渝金, 张超, 郭威, 等.内蒙古阿鲁科尔沁旗林西组植物化石新材料[J].地质与资源, 2017, 26(4):333-338. doi: 10.3969/j.issn.1671-1947.2017.04.001
[6] 王成文, 金巍, 张兴洲, 等.东北及领区晚古生代大地构造属性新认识[J].地层学杂志, 2008, 32(2):119-136. doi: 10.3969/j.issn.0253-4959.2008.02.001
[7] 杨兵, 张雄华, 葛孟春, 等.内蒙古林西地区晚二叠世-早三叠世孢粉组合及三叠系的发现[J].地球科学, 2014, 39(7):784-794. http://d.old.wanfangdata.com.cn/Periodical/dqkx201407002
[8] 程银行, 滕学建, 杨俊泉, 等.内蒙古东乌旗敖包查干地区中生代陆相火山构造特征[J].地质调查与研究, 2011, 34(1):16-22. doi: 10.3969/j.issn.1672-4135.2011.01.003
[9] 宋彪, 张玉海, 万渝生, 等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J].地质评论, 2002, 48(S1):26-30. http://d.old.wanfangdata.com.cn/Periodical/OA000005931
[10] Wu F Y, Yang Y H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chemical Geology, 2006, 234:105-126. doi: 10.1016/j.chemgeo.2006.05.003
[11] Xie L W, Zhang Y B, Zhang H H, et al. In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite[J]. Chinese Science Bulletin, 2008, 53:1565-1573. http://cn.bing.com/academic/profile?id=cd47cc68037bb1beb96d37816ba0f6cc&encoded=0&v=paper_preview&mkt=zh-cn
[12] Scherer E, Munker C, Mezger K. Calibration of the lutetium-hafnium clock[J]. Science, 2001, 293:683-687. http://cn.bing.com/academic/profile?id=b37331af347519a1f8cb28936795f4dd&encoded=0&v=paper_preview&mkt=zh-cn
[13] Blichert-Toft J, Albarede F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth Planet. Sci. Lett., 1997, 148:243-258. doi: 10.1016/S0012-821X(97)00040-X
[14] Vervoort J D, Blichert-Toft J. Evolution of the depleted mantle:Hf isotope evidence from juvenile rocks through time[J]. Geochim. Cosmochim. Acta, 1999, 63:533-556. doi: 10.1016/S0016-7037(98)00274-9
[15] Griffin W L, Wang X, Jackson S E, et al. Zircon geochemistry and magma mixing, SE China:In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous conplexes[J]. Lithos, 2002, 61:237-269. http://cn.bing.com/academic/profile?id=c097aa188f06ce2fa75dc423db446c4e&encoded=0&v=paper_preview&mkt=zh-cn
[16] Koschek G. Origin and significance of the SEM cathodoluminescence from zircon[J]. Journal of Microscopy, 1993, 171:223-232. doi: 10.1111/jmi.1993.171.issue-3
[17] Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth Science Review, 1994, 37:215-224. doi: 10.1016/0012-8252(94)90029-9
[18] Irvine T N, Baragar W R. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Science, 1971, 8:523-548. http://d.old.wanfangdata.com.cn/NSTLQK/10.1139-e71-055/
[19] Peccerillo A, Taylor S R. Geochemistry of Eocene cala-alkallne volcanic rocks from the Kastamonu area. Northern Turkey[J]. Contrib. Mineral. and Petrol., 1976, 58:63-81. https://link.springer.com/article/10.1007%2FBF00384745
[20] Boynton W V. Chapter 3-Cosmochemistry of the rare earth elements:meteorite studies[J]. Developments in Geochemistry, 1984, 2(2):63-114. http://cn.bing.com/academic/profile?id=a86bc72c95d06bcdf62c0e1eb55bf851&encoded=0&v=paper_preview&mkt=zh-cn
[21] Mcdonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4):223-253. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_fb4dd133285d7a6db94ef688ee319429
[22] Bacon C R, Druitt T H. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon[J]. Contributions to Mineralogy and Petrology, 1988, 98(2):224-256. doi: 10.1007/BF00402114
[23] Bonin B. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review[J]. Lithos, 2004, 78(1/2):1-24. http://www.sciencedirect.com/science/article/pii/S0024493704002014
[24] 林强, 葛文春, 曹林, 等.大兴安岭中生代双峰式火山岩的地球化学特征[J].地球化学, 2003, 32(3):208-222. doi: 10.3321/j.issn:0379-1726.2003.03.002
[25] Guffanti M, Clynne M A, Muffler L. Thermal and massmimplications of magmatic evolution in the Lassen volcanic region, California, and minimum constraints on basalt influx to the lower crust[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 1996, 101(B2):3003-3013. doi: 10.1029/95JB03463
[26] Wilson M. Magmatism and the geodynamics of basin formation[J]. Sediment Geology, 1993, 86(1/2):5-29. http://www.sciencedirect.com/science/article/pii/003707389390131N
[27] Shinjo R, Kato Y. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin[J]. Lithos, 2000, 54(3/4):117-137. http://cn.bing.com/academic/profile?id=95a4abbef83657faadfe7ef9b6f5eac3&encoded=0&v=paper_preview&mkt=zh-cn
[28] Tischendorf G, Paelchen W. Zur Klassifikation von Granitoiden/Classification of granitoids[J]. Zeitschrift fuer Geologische Wissenschaften, 1985, 13(5):615-627.
[29] 单强, 曾乔松, 罗勇, 等.新疆阿尔泰康布铁堡组钾质和钠质流纹岩的成因及同位素年代学研究[J].岩石学报, 2011, 7(12):3653-3665. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201112012
[30] Green T H. Experimental studies of trace-element partitioning applicable to igneous petrogenesis-Ssdona 16 years later[J]. Chemical Geology, 1994, 117:1-36. doi: 10.1016/0009-2541(94)90119-8
[31] Janousek V, Finger F, Roberts M, et al. Deciphering the petrogenesis of deeply buried granites:whole-rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif[J]. Earth & Environmental Science Transactions of the Royal Society of Edinburgh, 2004, 95:141-159.
[32] 刘德来, 马莉.松辽盆地裂谷期前火山岩与裂谷盆地关系及动力学过程[J].地质论评, 1998, 44(2):130-135. doi: 10.3321/j.issn:0371-5736.1998.02.003
[33] 赵海玲, 邓晋福, 陈发景, 等.中国东北地区中生代火山岩岩石学特征与盆地形成[J].现代地质, 1998, 12(1):56-59. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ801.006.htm
[34] 吴福元, 叶茂, 张世红.中国满洲里-绥芬河地学断面域的地球动力学模型[J].地球科学, 1995, 20(5):535-539. http://www.cqvip.com/qk/94035X/199505/1710801.html
[35] Wang P J, Liu W Z, Wang S X, et al. 40Ar/39Ar and K/Ar dating on the volcanic rocks in the Songliao basin, NE China:mConstraints on stratigraphy and basin dynamics[J]. International Journal of Earth Sciences, 2002, 91(2), 331-340. https://link.springer.com/article/10.1007%2Fs005310100219
[36] Zhang J H, Gao S, Ge W C, et al. Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China:Implications for subduction-induced delamination[J]. Chemical Geology, 2010, 276(3/4):144-165. http://cn.bing.com/academic/profile?id=6b906d24275831ba60cd504fbab119b0&encoded=0&v=paper_preview&mkt=zh-cn
[37] 林强, 葛文春, 孙德有, 等.中国东北地区中生代火山岩的大地构造意义[J].地质科学, 1998, 33(2):129-139. http://cdmd.cnki.com.cn/Article/CDMD-80165-2007101613.htm
[38] 邵济安, 张履桥, 牟保磊.大兴安岭中生代伸展造山过程中的岩浆作用[J].地学前缘, 1999, (4):339-346. doi: 10.3321/j.issn:1005-2321.1999.04.017
[39] Wang P J, Chen F K, Chen SM, et al. Geochemical and Nd-Sr-Pb isotopic composition of Mesozoic volcanic rocks in the Songliao basin, NE China[J]. Geochemical Journal, 2006, 40(2):149-159. doi: 10.2343/geochemj.40.149
[40] Xu W L, Pei F P, Wang F, et al. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China:Constraints on tectonic overprinting and transformations between multiple tectonic regimes[J]. Journal of Asian Earth Sciences, 2013, 74:167-193. https://www.researchgate.net/publication/268151863_Spatial-temporal_relationships_of_Mesozoic_volcanic_rocks_in_NE_China_Constraints_on_tectonic_overprinting_and_transformations_between_multiple_tectonic_regimes
[41] 张超, 吴新伟, 张渝金, 等.大兴安岭北段龙江盆地光华组碱流岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J].地质通报, 2017, 36(9):1531-1541. doi: 10.3969/j.issn.1671-2552.2017.09.005 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20170905&flag=1
[42] Wu F Y, Lin J Q, Wilde SA, et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China[J]. Earth and Planetary Science Letters, 2005, 233(1/2):103-119. http://www.sciencedirect.com/science/article/pii/S0012821X05001214
[43] 高晓峰, 郭锋, 范蔚茗, 等.南兴安岭晚中生代中酸性火山岩的岩石成因[J].岩石学报, 2005, 21(3):737-748. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200503014
[44] 隋振民, 葛文春, 吴福元, 等.大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因[J].岩石学报, 2007, 23(2):461-468. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702023
[45] 陈志广, 张连昌, 周新华, 等.满洲里新右旗火山岩剖面年代学和地球化学特征[J].岩石学报, 2006, 22(12):2971-2986. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200612014
[46] 李长华, 卫三元, 陈贵海, 等.内蒙古满洲里地区中生代中基性火山岩成因及构造地质背景[J].世界核地质科学, 2009, 27(1):19-24. http://d.old.wanfangdata.com.cn/Periodical/sjhdzkx201001004
[47] Pitcher W S. Granite type and tectonic environment[C]//Hsu K. Mountain Building Processes. London: AcademicPress, 1983: 19-40.
[48] Davidson J P, Stern C R. Comment and Reply on "Role of subduction erosion in the generation of Andean magmas"[J].Geology, 1991, 19(10):1054-1056. doi: 10.1130/0091-7613(1991)019<1054:CARORO>2.3.CO;2
[49] Pearce J A. Sources and settings of granitic rock[J]. Episodes, 1996, 19(4):120-125. http://www.episodes.co.in/www/backissues/194/Articles--120.pdf
[50] Foster H J, Tischendorf G, Trumbull R B. An evaluation of the R. (Y+Nb) discrimination diagram to infer tectonic setting of silicic igneous rocks[J]. Lithos, 1997, 40:261-293. doi: 10.1016/S0024-4937(97)00032-7
[51] 张旗.中国东部中生代岩浆活动与太平洋板块向西俯冲有关吗?[J].岩石矿物学杂志, 2013, 32(1):113-128. doi: 10.3969/j.issn.1000-6524.2013.01.010
[52] 张旗, 王元龙, 金惟俊, 等.造山前、造山和造山后花岗岩的识别[J].地质通报, 2008, 27(1):1-18. doi: 10.3969/j.issn.1671-2552.2008.01.001
[53] 李锦轶, 莫申国, 和政军, 等.大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约[J].地学前缘, 2004, 11(3):157-168. doi: 10.3321/j.issn:1005-2321.2004.03.017
[54] 许文良, 王枫, 裴福萍, 等.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J].岩石学报, 2013, 29(2):339-353. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201302001
[55] Kravchinsky V A, Cogné J P, Harbert W P, et al. Evolution of the Mongol-Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone, Siberia[J]. Geophysical Journal International, 2002, 148(1):34-57. doi: 10.1046/j.1365-246x.2002.01557.x
[56] Sorokin A A, Yarmolyuk V V, Kotov A B, et al. Geochronology of Triassic-Jurassic granitoids in the southern framing of the Mongol-Okhotsk fold belt and the problem of Early Mesozoic granite formation in central and eastern Asia[J]. Doklady Earth Sciences, 2004, 399(8):1091-1094.
-