桂东南马其岗石英二长斑岩年代学、地球化学特征及成因

王晓地, 张利国, 贾小辉. 桂东南马其岗石英二长斑岩年代学、地球化学特征及成因[J]. 地质通报, 2017, 36(5): 761-771.
引用本文: 王晓地, 张利国, 贾小辉. 桂东南马其岗石英二长斑岩年代学、地球化学特征及成因[J]. 地质通报, 2017, 36(5): 761-771.
WANG Xiaodi, ZHANG Liguo, JIA Xiaohui. A study of geochronology, geochemistry and genesis of Maqigang beschtauite pluton, south-eastern Guangxi[J]. Geological Bulletin of China, 2017, 36(5): 761-771.
Citation: WANG Xiaodi, ZHANG Liguo, JIA Xiaohui. A study of geochronology, geochemistry and genesis of Maqigang beschtauite pluton, south-eastern Guangxi[J]. Geological Bulletin of China, 2017, 36(5): 761-771.

桂东南马其岗石英二长斑岩年代学、地球化学特征及成因

  • 基金项目:
    中国地质调查局项目《中南地区基础地质综合研究》(编号:1212710610714)、《南岭关键地区区域地质调查》(编号:12120113063600)和《国家地质数据库建设与整合》(编号:1212011220512)
详细信息
    作者简介: 王晓地(1974-), 男, 硕士, 高级工程师, 从事中南地区岩浆岩有关的矿物学、岩石学调查和研究。E-mail:178372234@qq.com
  • 中图分类号: P588.13;P595;P597

A study of geochronology, geochemistry and genesis of Maqigang beschtauite pluton, south-eastern Guangxi

  • 马其岗石英二长斑岩体出露于桂东南博白-梧州断裂带南东侧,对其开展了锆石U-Pb年代学、地球化学、Sr-Nd-Hf同位素及成因研究。结果表明,岩体LA-ICP-MS锆石U-Pb年龄为90.2±1.5Ma(MSWD=1.7)。岩体富碱(ALK=7.38%~8.14%)、富钾(K2O=4.41%~4.78%),稀土元素特征为轻稀土元素富集型,微量元素特征为富集大离子亲石元素(Rb、Th、U、K、Pb、LREE),亏损高场强元素(Nb、Ta、P、Ti、HREE),符合钾玄岩系列的岩石特点。岩体有较高的Mg#值(42.82~50.35),较低的Sr含量(268.00×10-6~304.00×10-6),以及较高的锆石饱和温度(860~883℃),同时Nb/Ta(平均值为11.24)、Zr/Hf(平均值为38.20),Th/La值(平均值为0.17)明显不同于大陆地壳特征,表明岩浆主要来自下部地壳或地幔,在上升侵位过程中受到地壳大规模混染程度较小,具有EMⅡ富集地幔端元的Sr-Nd同位素特征。二阶段Nd模式年龄(tDM2)变化于1.33~1.36Ga之间,二阶段Hf模式年龄(tDM2)主体为1.20~1.50Ga,两者模式年龄较一致,显示马其岗岩体可能是中元古代中期镁铁质岩石部分熔融的产物。石英二长斑岩形成于板内伸展环境,整个华南在90Ma左右存在一次大规模的伸展事件,其动力学机制与古太平洋板块低角度俯冲有关。

  • 加载中
  • 图 1  马其岗岩体地质图(据参考文献修改)

    Figure 1. 

    图 2  马其岗石英二长斑岩锆石阴极发光图像(a)、锆石U-Pb谐和图(b)及年龄加权平均值图(c)

    Figure 2. 

    图 3  马其岗石英二长斑岩分类判别图[6-9]

    Figure 3. 

    图 4  马其岗石英二长斑岩稀土元素配分曲线(a)及微量元素蛛网图(b)(球粒陨石标准化数值据参考文献[10])

    Figure 4. 

    图 5  马其岗石英二长斑岩εNd(t)-t(a)、ISr-εNd(t)(b)、εHf(t)频数(c)和tDM2频数图(d)(a、b据参考文献[11-12])

    Figure 5. 

    图 6  马其岗石英二长斑岩构造环境判别图解[25-26]

    Figure 6. 

    表 1  马其岗石英二长斑岩LA-ICP-MS锆石U-Th-Pb同位素分析数据

    Table 1.  LA-ICP-MS zircon U-Th-Pb data of Maqigang beschtauite

    点号含量/10-6同位素比值(经普通铅校正)年龄(经普通铅校正)/Ma
    PbThU207Pb/206Pb±1σ207Pb/235U±1σ206Pb/238U±1σ207Pb/206Pb±1σ207Pb/235U±1σ206Pb/238U±1σ
    111.093796540.04950.00280.09440.00520.01380.000217213191.64.988.31.3
    212.263337370.05010.00240.09810.00460.01420.000221111195.04.291.21.0
    338.28105923830.05050.00130.09650.00260.01380.00012176193.62.488.30.7
    4198.73913760.14470.00207.1880.1230.35790.0041228423213515197219
    540.82107625040.05000.00140.10060.00300.01450.00011956797.32.792.90.8
    614.835438690.04820.00240.09360.00450.01420.000210912490.94.290.61.1
    711.985805790.05580.00300.11810.00650.01530.0002456122113698.11.1
    818.942779430.05150.00160.12690.00410.01790.00032617212141152
    954.11846040.05580.00120.61490.01340.07940.00074565148784924
    1018.5858711230.04620.00150.08990.00290.01410.00019.3674.187.42.790.00.7
    1141.4120425520.04810.00140.09210.00250.01380.00011066989.42.488.60.6
    1250.8135731020.05230.00120.10150.00240.01400.00012985498.12.289.80.7
    1327.9457513880.04870.00140.11820.00340.01780.00031326711331142
    14267.5113534900.05300.00070.49460.00670.06740.00043283640854203
    1512.103285260.06440.00330.15930.00750.01820.000375410715071172
    1613.555457400.05050.00280.09950.00530.01450.000221712896.44.993.01.2
    1710.843486430.05360.00220.10140.00390.01400.00023549798.13.689.41.5
    1820.1068611240.04970.00180.09470.00320.01390.00011898191.93.088.90.7
    下载: 导出CSV

    表 2  马其岗石英二长斑岩主量、微量和稀土元素分析结果及参数

    Table 2.  Compositions and parameters of major, trace and rare earth elements in Maqigang beschtauite

    样品mqg-1mqg-2mqg-3D3015-1样品mqg-1mqg-2mqg-3D3015-1D3013-1样品mqg-1mqg-2mqg-3D3015-1D3013-1
    SiO264.7664.0464.2664.00La70.3068.7069.2071.3167.58Ba1173.001049.001031.00935.00945.00
    TiO20.941.071.081.06Ce128.00127.00128.00138.60135.40Rb176.00170.00155.00160.00164.00
    Al2O314.6614.6914.6814.68Pr14.2014.3014.3015.9315.55Sr268.00280.00304.00283.00268.00
    Fe2O32.763.713.043.31Nd54.3055.0054.6059.0256.10Y47.5056.2047.8039.2239.35
    FeO3.382.802.992.25Sm10.309.989.9610.8710.77Zr265.00207.00386.00429.00457.00
    MnO0.090.100.090.07Eu2.452.302.322.452.52Nb37.8037.2037.8031.4032.00
    MgO1.421.491.451.28Gd9.199.279.209.629.73Th18.3018.2017.1020.2019.90
    CaO2.502.883.333.33Tb1.511.601.541.451.43Pb27.1025.2024.3024.5026.50
    Na2O3.363.273.082.95Dy8.809.488.948.198.17Ga23.8023.1022.5017.5017.60
    K2O4.784.524.414.43Ho1.601.751.561.571.60Zn101.00139.00102.0087.0097.00
    P2O50.280.280.330.35Er4.685.564.924.264.25Cu17.3015.7015.7014.9015.90
    H2O+0.420.810.811.58Tm0.770.840.700.680.66Ni10.1010.308.7312.0014.90
    CO20.170.150.150.09Yb4.535.184.534.244.19V55.8052.9060.0087.6082.90
    灼失0.780.840.90Lu0.680.820.670.620.63Cr14.5013.1013.507.1013.30
    总量100.30100.65100.6099.38∑REE311.31311.78310.44328.81318.58Hf7.406.079.6110.7011.20
    ALK8.147.797.497.38LREE279.55277.28278.38298.18287.92Cs9.378.4710.6011.2010.70
    K2O/Na2O1.421.381.431.50HREE31.7634.5032.0630.6330.66Sc8.208.299.402.402.10
    ACNK0.940.940.930.94∑L/∑H8.808.048.689.739.39Ta2.152.162.1515.9017.20
    σ3.052.882.642.59(La/Yb)n11.139.5110.9612.0611.57Co11.5012.1011.8030.9017.20
    Mg#42.8248.6846.3650.35δEu0.250.240.240.240.25U3.633.443.2974.3060.60
    注:石英二长斑岩样品D3015-1、D3013-1据参考文献;主量元素含量单位为%,微量和稀土元素为10-6
    下载: 导出CSV

    表 3  马其岗石英二长斑岩Sr-Nd同位素组成分析结果

    Table 3.  Sr-Nd isotope data of Maqigang beschtauite

    样号Sm/10-6Nd/10-6147Sm/144Nd143Nd/144NdεNd(t)t/MaRb/10-6Sr/10-687Rb/86Sr87Sr/86Sr(87Sr/86Sr)itDM2/Ga
    mqg-19.35951.170.11130.5123200.000002-5.2290.2168.8253.11.8800.711580.000010.709161.33
    mqg-29.41951.360.11160.5123120.000003-5.3890.2165.0274.61.6940.711330.000030.709151.34
    mqg-39.94153.800.11240.5123020.000004-5.5990.2154.8301.91.4460.710970.000030.709111.36
    下载: 导出CSV

    表 4  马其岗石英二长斑岩锆石原位Hf同位素组成

    Table 4.  LA-MC-ICP-MS zircon Hf isotope data of Maqigang beschtauite

    点号176Yb/177Hf176Lu/177Hf176Hf/177Hft/MaεHf(t)tDM1/GatDM2/Ga
    10.0313350.0008830.2826410.00001488-2.70.50.861.33
    20.0245230.0006920.2825930.00001391-4.40.50.931.44
    30.0380070.0010820.2826940.00001088-0.90.30.791.21
    40.0288410.0007950.2815230.0000141911-2.50.52.402.70
    50.0372950.0010700.2826380.00001992.9-2.80.70.871.33
    60.0277010.0007820.2826090.00001491-3.80.50.901.40
    70.0440300.0012160.2826780.00001997-1.30.70.821.24
    80.0254660.0007420.2825730.000012115-4.60.40.951.47
    90.0573360.0016130.2824950.0000154920.50.51.091.43
    100.0266400.0007620.2826060.00001290-3.90.40.911.41
    110.0316840.0009620.2826260.00001288.6-3.30.40.891.36
    120.0456900.0012750.2826810.00001189.8-1.30.40.811.24
    130.0226080.0006720.2826190.000012114-3.00.40.891.36
    140.0365680.0010990.2822740.000010420-8.70.41.381.96
    150.0259530.0007550.2827070.0000121170.20.40.771.16
    160.0365490.0010340.2826660.00001693-1.80.60.831.27
    170.0227850.0006580.2826560.00001189-2.20.40.841.30
    180.0283150.0008300.2826630.00001288.9-1.90.40.831.28
    下载: 导出CSV
  • [1]

    Li X H, Zhou H W, Liu Y, et al. Shoshonitic intrusive suite in SE Guangxi:Petrology and geochemistry[J].Chinese Science Bulletin, 2000, 45(7):653-659. doi: 10.1007/BF02886045

    [2]

    郭新生, 陈江峰, 张巽, 等.桂东南富钾岩浆杂岩的Nd同位素组成:华南中生代地幔物质上涌事件[J].岩石学报, 2001, 17(1):19-27. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200101003.htm

    [3]

    Iddings J P. Absarokite-shoshonite-banakite series[J]. The Journal of Geology, 1895, 3(8):935-959. doi: 10.1086/607398

    [4]

    袁洪林, 吴福元, 高山, 等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报, 2001, 48(14):1511-1520. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200314007.htm

    [5]

    王银喜, 杨杰东, 陶仙聪, 等.化石、矿物和岩石样品的Sm-Nd同位素实验方法研究及其应用[J].南京大学学报(自然科学版), 1988, 21(2):297-308. http://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ198802017.htm

    [6]

    Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3):215-224. https://www.researchgate.net/publication/223901164_Naming_materials_in_the_magmaigneous_rock_system

    [7]

    Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline vol-canic rocks from the Kastamonu area, northern Turkey[J]. Contribu-tions to mineralogy and petrology, 1976, 58(1):63-81. doi: 10.1007/BF00384745

    [8]

    Maniar P D, Piccoli P M. Tectonic Discrimination of Granitoids[J]. Geological society of America bulletin, 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    [9]

    Irvine T N, Baragar W R A. A guide to the chemical classification of the common volcanic rocks[J].Canadian Journal of Earth Sciences, 1971, 8(5):523-548. doi: 10.1139/e71-055

    [10]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oce-anic basalts:Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [11]

    孙涛, 周新民, 陈培荣, 等.南岭东段中生代强过铝花岗岩成因及其大地构造意义[J].中国科学(D辑), 2003, 48(2):165-174. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200312009.htm

    [12]

    Zinder A, Hart S R. Chemical geodynamics[J]. Annual Reviews of Earth and Planetary Sciences, 1986, 14:493-573. doi: 10.1146/annurev.ea.14.050186.002425

    [13]

    吴才来, 周洵若, 黄许陈, 等.安徽茅坦A型花岗岩研究[J].地质学报, 1998, 72(3):237-248. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199803004.htm

    [14]

    邱检生, 王德滋, McInnes B I A.浙闽沿海地区I型-A型复合花岗岩体的地球化学及成因学及成因[J].岩石学报, 1999, 15(2):237-246. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.009.htm

    [15]

    邱检生, 王德滋, 蟹泽聪史, 等.福建沿海铝质A型花岗岩的地球化学及岩石成因[J].地球化学, 2000, 29(4):313-321. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200004000.htm

    [16]

    王强, 赵振华, 简平, 等.华南腹地白垩纪A型花岗岩类或碱性侵入岩年代学及其对华南晚中生代构造演化的制约[J].岩石学报, 2005, 21(3):795-808. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503020.htm

    [17]

    谭俊, 魏俊浩, 李水如, 等.广西昆仑关A型花岗岩地球化学特征及构造意义[J].地球科学, 2008, 33(6):743-754. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200806001.htm

    [18]

    Beard J S, Lofgren G E. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb[J]. Journal of Petrology, 1991, 32(2):365-401. doi: 10.1093/petrology/32.2.365

    [19]

    Taylor S R, McLennan S M. The Continental Crust:Its Composi-tion and Evolution[M]. Oxford:Blackwell, 1985:1-312.

    [20]

    Stolz A J, Jochum K P, Spettel B, et al. Fluid-and melt-related en-richment in the subarc mantle:Evidence from Nb/Ta variations in island-arc besalts[J].Geology, 1996, 24(7):587-590. doi: 10.1130/0091-7613(1996)024<0587:FAMREI>2.3.CO;2

    [21]

    Rudnick R L, Barth M, Horn I, et al. Rutile-bearing refractory eclogites:Missing link between continents and depleted mantle[J]. Science, 2000, 287(5451):278-281. doi: 10.1126/science.287.5451.278

    [22]

    殷鸿福, 吴顺宝, 杜远生, 等.华南是特提斯多岛洋体系的一部分[J].地球科学, 1999, 24(1):1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX901.000.htm

    [23]

    Carter A, Roques D, Bristow C, et al. Understanding Mesozoic ac-cretion southeast Asia:Significance of Triassic thermotectonism(in-dosinian orogeny) in Vietnam[J]. Geology, 2001, 29(3):211-214. doi: 10.1130/0091-7613(2001)029<0211:UMAISA>2.0.CO;2

    [24]

    Watson E B, Harrison T M. Zircon saturation revisited:tempera-ture and composition effects in a variety of crustal magmatypes[J]. Earth and Planetary Science Letters, 1983, 64(2):295-304. doi: 10.1016/0012-821X(83)90211-X

    [25]

    Harris N B W, Marzouki F M H, Ali S. The Jabel Sayid Complex, Arabian Shield:geochemical constraints on the origin of peralka-line and related granites[J]. Journal of the Geological Society, 1986, 143(2):287-295. doi: 10.1144/gsjgs.143.2.0287

    [26]

    Pearce J A, Harris N B W, Tindle A G. Trace element discrimina-tion diagrams for the tectonic interpretation of granitic rocks[J]. Journal of petrology, 1984, 25(4):956-983. doi: 10.1093/petrology/25.4.956

    [27]

    吴少波, 白玉宝, 杨友运.银根盆地早白垩世火山岩特征及形成的大地构造环境[J].矿物岩石, 1999, 19(1):24-28. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS901.004.htm

    [28]

    Scarrow J H, Molina J F, Bea F, et al. Within-plate calc-alkaline rocks:insights from alkaline mafic magma peraluminous crustal melt hybrid appinites of the Central Iberian Variscan continental collision[J]. Lithos, 2009, 110(1):50-64. https://www.researchgate.net/publication/229224401_Within-plate_calc-alkaline_rocks_Insights_from_alkaline_mafic_magma-peraluminous_crustal_melt_hybrid_appinites_of_the_Central_Iberian_Variscan_continental_collision

    [29]

    李献华, 胡瑞忠, 饶冰.粤北白垩纪基性岩脉的年代学和地球化学[J].地球化学, 1997, (2):14-31. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX702.003.htm

    [30]

    董传万, 张登荣, 徐夕生, 等.福建晋江中-基性岩墙群的锆石SHRIMP U-Pb定年和岩石地球化学[J].岩石学报, 2006, 22(6):1696-1702. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200606026.htm

    [31]

    唐立梅, 陈汉林, 董传万, 等.中国东南部晚中生代构造伸展作用——来自海南岛基性岩墙群的证据[J].岩石学报, 2010, 26(4):1204-1216. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201004019.htm

    [32]

    朱捌, 凌洪飞, 沈渭洲, 等.粤北下庄矿田晚白垩世辉绿玢岩的地球化学特征及其构造意义[J].地质论评, 2012, 54(1):26-36. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200801005.htm

    [33]

    Geng H T, Xu X S, O' Reilly S Y, et al. Cretaceous volcanic-in-trusive magmatism in western Guangdong and its geological signifi-cance[J]. Science in China (Series D), 2006, 49(7):696-713. doi: 10.1007/s11430-006-0696-7

    [34]

    Li X H. Cretaceous magmatism and lithospheric extension in Southeast China[J].Journal of Asian Earth Sciences, 2000, 18(3):293-305. doi: 10.1016/S1367-9120(99)00060-7

    [35]

    李武显, 周新民.古太平洋岩石圈消减与中国东南部晚中生代火成岩成因——岩石圈消减与玄武岩底侵相结合模式的补充证据[J].大地构造与成矿学, 2001, 25(1):55-63. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200101005.htm

    广西区域地质调查研究院. 广西1: 25万玉林市幅区域地质调查报告. 2006.

  • 加载中

(6)

(4)

计量
  • 文章访问数:  607
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2016-09-18
修回日期:  2017-03-16
刊出日期:  2017-05-25

目录