基于激光雷达(LiDAR)的地形与钻探滑面重构滑坡体积计算方法——以四川省巴塘县德达古滑坡为例

李彩虹, 郭长宝, 张广泽, 吴瑞安, 张绪教, 杨志华, 林之恒, 张怡颖. 基于激光雷达(LiDAR)的地形与钻探滑面重构滑坡体积计算方法——以四川省巴塘县德达古滑坡为例[J]. 地质通报, 2021, 40(12): 2015-2023.
引用本文: 李彩虹, 郭长宝, 张广泽, 吴瑞安, 张绪教, 杨志华, 林之恒, 张怡颖. 基于激光雷达(LiDAR)的地形与钻探滑面重构滑坡体积计算方法——以四川省巴塘县德达古滑坡为例[J]. 地质通报, 2021, 40(12): 2015-2023.
LI Caihong, GUO Changbao, ZHANG Guangze, WU Ruian, ZHANG Xujiao, YANG Zhihua, LIN Zhiheng, ZHANG Yiying. A landslide volume calculation method based on LiDAR topography and slip surface reconstruction: A case study of Deda ancient landslide in Batang County of Sichuan Province[J]. Geological Bulletin of China, 2021, 40(12): 2015-2023.
Citation: LI Caihong, GUO Changbao, ZHANG Guangze, WU Ruian, ZHANG Xujiao, YANG Zhihua, LIN Zhiheng, ZHANG Yiying. A landslide volume calculation method based on LiDAR topography and slip surface reconstruction: A case study of Deda ancient landslide in Batang County of Sichuan Province[J]. Geological Bulletin of China, 2021, 40(12): 2015-2023.

基于激光雷达(LiDAR)的地形与钻探滑面重构滑坡体积计算方法——以四川省巴塘县德达古滑坡为例

  • 基金项目:
    国家自然科学基金项目《岷江上游大型深层蠕滑型滑坡渐进变形破坏机制与动态稳定性研究》(批准号:41877279)、《青藏高原东缘古滑坡复活机理与早期识别研究》(批准号:41731287)和中国地质调查局项目《川西—藏东地区交通廊道活动构造与地质调查》(编号:DD20190319)
详细信息
    作者简介: 李彩虹(1997-), 女, 在读硕士生, 第四纪地质学专业, 从事地质灾害调查与风险评价的研究。E-mail: 1657647609@qq.com
    通讯作者: 郭长宝(1980-), 男, 博士, 研究员, 从事工程地质与地质灾害调查研究。E-mail: guochangbao@163.com
  • 中图分类号: P642.22

A landslide volume calculation method based on LiDAR topography and slip surface reconstruction: A case study of Deda ancient landslide in Batang County of Sichuan Province

More Information
  • 由于滑坡具有突发性和运动速度快的特性,对社会和人类生命财产具有重大危害,往往滑坡体积和规模越大造成的危害也越大,因此,滑坡体积的精准计算对于防治工程的实施和防灾减灾风险评价尤为重要。目前滑坡体积计算常用的方法主要有野外测量法、几何法、数值模拟法、DEM(数字高程模型)法等,这些方法都具有一定的局限性,对于滑坡体积的计算结果精度较差。因此,提出了一种基于高精度的激光雷达(LiDAR)地形与滑动面重构的滑坡体积计算方法(LS-Drill_Volume),并以四川省巴塘县德达古滑坡为例进行滑坡体积的计算研究。通过采用机载LiDAR扫描获取德达古滑坡的地形数据;利用克里金插值法对滑坡边界点和钻孔数据进行插值,以此重构滑动面,获得滑动面高程;通过填挖方对滑坡体积进行计算,得到德达古滑坡体积为1259×104 m3,其中德达Ⅰ号滑坡体积为613×104 m3,Ⅱ号滑坡体积为646×104 m3,与野外测量法相比,体积计算精度分别提升了20.8%、21.4%和20.2%。此方法与现有体积测算方法相比,能够提供更精确的滑坡体体积,从而为滑坡评价及工程防治提供更可靠的依据。

  • 加载中
  • 图 1  四川省巴塘县德达滑坡区域位置

    Figure 1. 

    图 2  巴塘县德达滑坡工程平面图

    Figure 2. 

    图 3  滑坡体积计算技术方法流程

    Figure 3. 

    图 4  填挖方体积计算原理(据参考文献[28]修改)

    Figure 4. 

    图 5  德达古滑坡DSM(A)与DEM(B)处理效果对比图

    Figure 5. 

    图 6  德达古滑坡Ⅰ-Ⅰ'剖面工程地质图

    Figure 6. 

    图 7  德达古滑坡Ⅱ-Ⅱ'剖面工程地质图

    Figure 7. 

    图 8  德达古滑坡横剖面图

    Figure 8. 

    图 9  德达古滑坡滑动面拟合结果

    Figure 9. 

    表 1  德达Ⅰ号滑体滑动面趋势效应

    Table 1.  Trend effect analysis of the sliding surface of Deda Ⅰ landslide

    趋势效应 标准平均值(ME) 均方根预测误差(RMSE) 平均标准误差(ASE) 标准均方根预测误差(RMSSE) |RMSE-ASE|
    0.60 18.67 23.02 0.83 4.35
    一阶 -0.51 18.60 18.07 1.03 0.53
    二阶 -0.88 19.50 18.00 1.08 1.50
    三阶 -1.22 19.27 16.20 1.19 3.07
    下载: 导出CSV

    表 2  德达Ⅱ号滑体滑动面趋势效应

    Table 2.  Trend effect analysis of the sliding surface of Deda Ⅱ landslide

    趋势效应 标准平均值(ME) 均方根预测误差(RMSE) 平均标准误差(ASE) 标准均方根预测误差(RMSSE) |RMSE-ASE|
    0.33 11.83 7.88 1.58 3.95
    一阶 -0.76 12.00 13.17 0.94 1.17
    二阶 0.03 13.09 13.18 0.97 0.09
    三阶 0.19 13.18 11.40 1.16 1.77
    下载: 导出CSV

    表 3  德达古滑坡体积计算结果对比

    Table 3.  Comparison of calculation resultsof the Deda ancient landslide

    滑坡体 野外测量估算体积/104 m3 LS-Drill_Volume方法计算体积/104 m3 建议体积/104 m3 基于本文方法的计算精度提升/%
    Ⅰ号滑坡体 780 613 613 21.4
    Ⅱ号滑坡体 810 646 646 20.2
    滑坡总体积 1590 1259 1259 20.8
    下载: 导出CSV
  • [1]

    黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3): 433-451. doi: 10.3321/j.issn:1000-6915.2007.03.001

    [2]

    王治华. 滑坡遥感调查、监测与评估[J]. 国土资源遥感, 2007, (1): 10-15, 23, 103. doi: 10.3969/j.issn.1001-070X.2007.01.002

    [3]

    郭长宝, 张永双, 蒋良文, 等. 川藏铁路沿线及邻区环境工程地质问题概论[J]. 现代地质, 2017, 31(5): 877-899. doi: 10.3969/j.issn.1000-8527.2017.05.001

    [4]

    孙小平, 曾鹏, 张天龙, 等. 滑坡运动距离超越概率评价及危险性区划[J]. 地质通报, 2021, 40(9): 1560-1569. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20210915&flag=1

    [5]

    张小咏, 陈正超, 赵海涛. 一种基于遥感影像和DEM的滑坡体体积快速计算方法[J]. 应用基础与工程科学学报, 2013, 21(5): 938-945. doi: 10.3969/j.issn.1005-0930.2013.05.014

    [6]

    许强, 李为乐, 董秀军, 等. 四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J]. 岩石力学与工程学报, 2017, 36(11): 2612-2628. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201711002.htm

    [7]

    Barla G, Paronuzzi P. The 1963 Vajont Landslide: 50th Anniversary[J]. Rock Mechanics and Rock Engineering, 2013, 46(6): 1267-1270. doi: 10.1007/s00603-013-0483-7

    [8]

    钟立勋. 意大利瓦依昂水库滑坡事件的启示[J]. 中国地质灾害与防治学报, 1994, (2): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH402.012.htm

    [9]

    赵志明, 潘岳, 陈理. 四川茂县新磨村滑坡高速启动机理研究[J/OL]. 工程地质学报: 1-10[2021-08-19]. https://doi.org/10.13544/j.cnki.jeg.2020-241.

    [10]

    韩建楠. 基于重构滑动面的滑坡体积的测算[D]. 长安大学硕士学位论文, 2018.

    [11]

    Cha D, Hwang J, Choi B. Landslides detection and volume estimation in Jinbu area of Korea[J]. Forest Science and Technology, 2018, 14(2): 61-65. doi: 10.1080/21580103.2018.1446367

    [12]

    熊道锟, 胡济珍. 一种计算滑坡体积的新方法[J]. 水文地质工程地质, 1990, (2): 51-54, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG199002016.htm

    [13]

    王湘桂, 吕玲, 王浩. 平行断面法在滑坡体积计算中的应用[J]. 资源环境与工程, 2012, 26: 107-108. doi: 10.3969/j.issn.1671-1211.2012.z1.029

    [14]

    周婷, 葛云峰, 郑淼, 等. 火星水手谷滑坡体体积的计算方法研究[J]. 安全与环境工程, 2017, 24(4): 34-42. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201704006.htm

    [15]

    Marchesini I, Cencetti C, Rosa P. A preliminary method for the evaluation of the landslides volume at a regional scale[J]. GeoInformatica, 2009, 13(3): 277-289. doi: 10.1007/s10707-008-0060-5

    [16]

    Murty T S. Tsunami Wave Height Dependence on Landslide Volume[J]. Pure and Applied Geophysics, 2003, 160(10/11): 2147-2153. http://www.onacademic.com/detail/journal_1000034427194610_6e1c.html

    [17]

    Nikolaeva E, Walter T R, Shirzaei M, et al. Landslide observation and volume estimation in central Georgia based on L-band InSAR[J]. Natural Hazards and Earth System Science, 2014, 14(3): 675-688. doi: 10.5194/nhess-14-675-2014

    [18]

    王治华, 徐起德, 徐斌. 岩门村滑坡高分辨率遥感调查与机制分析[J]. 岩石力学与工程学报, 2009, 28(9): 1810-1818. doi: 10.3321/j.issn:1000-6915.2009.09.011

    [19]

    殷跃平, 成余粮, 王军, 等. 汶川地震触发大光包巨型滑坡遥感研究[J]. 工程地质学报, 2011, 19(5): 674-684. doi: 10.3969/j.issn.1004-9665.2011.05.007

    [20]

    Rahman A M, Hiroyuki M. Volumetric Analysis of the Landslide in Abe Barek, Afghanistan Based on Nonlinear Mapping of Stereo Satellite Imagery-Derived DEMs[J]. Remote Sensing, 2021, 13(3): 1-22. http://www.researchgate.net/publication/348829002_Volumetric_Analysis_of_the_Landslide_in_Abe_Barek_Afghanistan_Based_on_Nonlinear_Mapping_of_Stereo_Satellite_Imagery-Derived_DEMs

    [21]

    曹入文, 周训, 陈柄桦, 等. 四川巴塘县茶洛地区温泉及间歇喷泉水化学特征和成因分析[J]. 地学前缘, 2021, 28(4): 361-372. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202104040.htm

    [22]

    白永健, 李明辉, 王东辉, 等. 金沙江中游巴塘县地质灾害发育特征及成灾规律[J]. 中国地质灾害与防治学报, 2014, 25(2): 103-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201402023.htm

    [23]

    吴瑞安, 倪嘉伟, 郭长宝等. 川西巴塘断裂带黄草坪滑坡形成机制[J]. 地质通报, 2021, 40(12): 1992-2001. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20211202&flag=1

    [24]

    刘妍. 基于MicroStation的机载激光雷达数据处理应用研究[D]. 长安大学硕士学位论文, 2011.

    [25]

    赵秀臣. 基于无人机低空遥感和深度学习的DEM生产技术[D]. 西安电子科技大学硕士学位论文, 2019.

    [26]

    吴小芳, 杜清运, 徐智勇, 等. 复杂线状符号的设计及优化算法研究[J]. 武汉大学学报(信息科学版), 2006, (7): 632-635. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200607019.htm

    [27]

    靳国栋, 刘衍聪, 牛文杰. 距离加权反比插值法和克里金插值法的比较[J]. 长春工业大学学报(自然科学版), 2003(3): 53-57. doi: 10.3969/j.issn.1674-1374-B.2003.03.017

    [28]

    李俊晓, 李朝奎, 殷智慧. 基于ArcGIS的克里金插值方法及其应用[J]. 测绘通报, 2013, (9): 87-90, 97. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201309026.htm

    [29]

    刘世伟, 吴锦奎, 张文春, 等. 基于克里金插值估算区域降水量的抽样方法对比分析——以甘肃省为例[J]. 冰川冻土, 2015, 37(3): 650-657. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201503011.htm

    [30]

    张建成, 葛亮, 王亮. 利用ArcGIS进行土方挖填方量计算的原理与实践[J]. 中国水土保持, 2016, (7): 65-67. doi: 10.3969/j.issn.1000-0941.2016.07.025

  • 加载中

(9)

(3)

计量
  • 文章访问数:  1621
  • PDF下载数:  7
  • 施引文献:  0
出版历程
收稿日期:  2021-10-14
修回日期:  2021-11-05
刊出日期:  2021-12-15

目录