澜沧江昌都段滑坡发育特征及形成机制

张佳佳, 田尤, 陈龙, 李元灵, 高波, 李洪梁. 澜沧江昌都段滑坡发育特征及形成机制[J]. 地质通报, 2021, 40(12): 2024-2033.
引用本文: 张佳佳, 田尤, 陈龙, 李元灵, 高波, 李洪梁. 澜沧江昌都段滑坡发育特征及形成机制[J]. 地质通报, 2021, 40(12): 2024-2033.
ZHANG Jiajia, TIAN You, CHEN Long, LI Yuanling, GAO Bo, LI Hongliang. Development and formation mechanism of landslides along Changdu section of Lancang River[J]. Geological Bulletin of China, 2021, 40(12): 2024-2033.
Citation: ZHANG Jiajia, TIAN You, CHEN Long, LI Yuanling, GAO Bo, LI Hongliang. Development and formation mechanism of landslides along Changdu section of Lancang River[J]. Geological Bulletin of China, 2021, 40(12): 2024-2033.

澜沧江昌都段滑坡发育特征及形成机制

  • 基金项目:
    中国地质调查局项目《藏东昌都地区城镇灾害地质调查》(编号:DD20190644)、自然资源部深地动力学重点实验室自主(开放)研究课题《映秀-北川断裂带南坝段断裂变形结构对同震大型滑坡的作用机制研究》(编号:J1901)和第二次青藏高原综合科学考察研究项目《重大泥石流灾害及风险》(编号:2019QZKK0902)
详细信息
    作者简介: 张佳佳(1988-), 男, 在读博士生, 工程师, 从事内动力地质灾害研究。E-mail: jimjia2008@163.com
  • 中图分类号: P642.22

Development and formation mechanism of landslides along Changdu section of Lancang River

  • 中国的山区和高原发育的滑坡地质灾害最严重,青藏高原东部横断山区的大江大河沿岸发育一系列严重和频繁的地质灾害。基于前期InSAR遥感解译的工作,通过现场的野外详细调查,最终确定了澜沧江昌都段的75处滑坡地质灾害,详细分析了滑坡的发育特征和主要影响因素,总结了砂泥岩软弱地层区滑坡、断裂控制型滑坡、堆积层滑坡共6类典型滑坡的形成机制。结果表明:①澜沧江干流岸坡的滑坡中,堆积层的土质蠕滑滑坡最发育,河流切坡是临江土质滑坡的主要触发因素。临江高位滑坡往往表现出高位但不远程的特征;②岩质滑坡中最发育的两类斜坡结构分别为反向斜坡和顺向斜坡,这与砂泥岩软弱岩体中发育的层理及垂直于层理的主控节理直接相关;③85%以上的滑坡发育在软-较软沉积岩岩组中,表明岩石强度一定程度上影响了滑坡的发育。区内斜坡表层的强风化带及古(老)滑坡的堆积体为堆积层滑坡提供物质基础,该类滑坡多存在蠕滑和多级滑动的特征;④卡贡-盐井活动断裂对滑坡灾害空间分布具有明显的控制作用,表现在断裂带控制滑坡边界和破碎带直接成为滑体。研究结果可为铁路修建过程的边坡灾害管控提供参考和支撑。

  • 加载中
  • 图 1  澜沧江昌都段地理位置

    Figure 1. 

    图 2  澜沧江昌都段斜坡形变速率(a)及滑坡地质灾害分布(b)

    Figure 2. 

    图 3  澜沧江沿岸典型蠕滑动滑坡和高位滑坡

    Figure 3. 

    图 4  沿岸滑坡与澜沧江水位相对位置关系

    Figure 4. 

    图 5  滑坡所在斜坡结构的数量统计

    Figure 5. 

    图 6  无人机摄取的典型反向坡和顺向坡滑坡全貌图

    Figure 6. 

    图 7  澜沧江沿岸岩组中滑坡发育图

    Figure 7. 

    图 8  澜沧江支流麦曲河沿岸古滑坡堆积体及其活动迹象(察雅县城1号和2号滑坡)

    Figure 8. 

    图 9  澜沧江断裂沿线滑坡发育图

    Figure 9. 

    图 10  居雪村滑坡与卡贡-盐井断裂空间关系

    Figure 10. 

    图 11  研究区典型滑坡形成机制

    Figure 11. 

    表 1  卫星SAR影像数据基本参数信息

    Table 1.  Basic parameters of the satellite SAR image datasets

    参数 SAR传感器
    RADARSAT-2 Sentinel-1
    轨道方向 降轨 升轨
    所处波段 C C
    雷达波长/cm 5.6 5.6
    空间分辨率/m 5 5×20
    重访周期/d 24 12
    入射角/° 35.6 33.9
    影像时间(年-月) 2018-08—2020-02 2018-08—2020-02
    影像数量/景 10 45
    下载: 导出CSV

    表 2  研究区工程地质岩组分区

    Table 2.  Partition of engineering geological rock association in study area

    工程地质岩组 地层 岩性、分布特征
    软-较软沉积沉岩组 古近系贡觉组(Eg),侏罗系汪布组(J1w)、东大桥组(J2d)、小索卡组(J3x),白垩系景星组(K1j)、南新组(K2n),新近系拉屋拉组(Nl),二叠系妥坝组(P3t),三叠系阿堵拉组(T3a)、盖拉组(T3d)、东达村组(T3ddc)、甲丕拉组(T3j) 岩性以层理发育的砾岩、砂岩、泥岩为主
    较软-较硬浅变质岩、碳酸盐岩岩组 石炭系卡贡岩组(C1k),泥盆系卓戈洞组(D3z),二叠系里查组(P1l)、交嘎组(P2j),三叠系波里拉组(T3b) 岩性以板岩夹千枚岩、厚层灰岩、白云岩、大理岩为主
    较坚硬块状深变质岩组 元古宇吉塘岩群(Pt1-2j)、卡穷岩群(Pt1-2k)、酉西群(Pt3Y) 岩性以片麻岩、变粒岩、石英片岩等为主
    坚硬-较坚硬块状火成岩组 二叠系夏牙村组(P3x),三叠系马拉松多组(T1-2m)、竹卡群(T2-3z) 零星分布,主要分布在澜沧江沿岸,主要为块状结构花岗岩、闪长岩及岩浆岩岩脉
    松散-稍密堆积物岩组 第四系(Q) 物质组成主要为冲积卵石土,崩滑堆积碎石土、块石土,主要分布在研究区内澜沧江及其支流河谷两岸
    下载: 导出CSV
  • [1]

    Glade T. Establishing the frequency and magnitude of landslide-triggering rainstorm events in New Zealand[J]. Environ. Geol., 1998, 35(2/3): 160-174. http://www.onacademic.com/detail/journal_1000034448555210_1aed.html

    [2]

    Wallemacq P, Below R, McLean D. Economic losses, poverty and disasters 1998-2017[M]. United Nations Office for disaster risk reduction (UNDRR) and Centre for Research on the Epidemiology of Disasters (CRED) publications, 2018.

    [3]

    Turner A K. Social and environmental impacts of landslides[J]. Innov. Infrastruct. Solut., 2018, 3(1). http://www.onacademic.com/detail/journal_1000040841920110_84d3.html

    [4]

    Liu W, Yan S X, He S M. Landslide damage incurred to buildings: A case study of Shenzhen landslide[J]. Engineering Geology, 2018, 247: 69-83. doi: 10.1016/j.enggeo.2018.10.025

    [5]

    Çelik S, Ozyazıcıoglu M, Sahin R, et al. The destruction of Erzurum ski-jumping complex by a landslide: evaluation of an engineering design failure[J]. Nat Hazards, 2021, 107: 475-496. doi: 10.1007/s11069-021-04591-2

    [6]

    Shi P. Natural Disasters in China[M]. Springer, Berlin, Heidelberg, 2016.

    [7]

    Tomáš P. Landslides and Quaternary climate changes-The state of the art[J]. Earth-Science Reviews, 2019, 196: 102871. doi: 10.1016/j.earscirev.2019.05.015

    [8]

    Zhang Y, Zhao X, Lan H, et al. A pleistocene landslidedammed lake, Jinsha River, Yunnan, China[J]. Quaternary International, 2011, 233(1): 72-80. doi: 10.1016/j.quaint.2010.10.020

    [9]

    Chen J, Dai F, Lv T, et al. Holocene landslide-dammed lake deposits in the upper Jinsha River, SE Tibetan Plateau and their ages[J]. Quaternary International, 2013, 298: 107-123. doi: 10.1016/j.quaint.2012.09.018

    [10]

    Wang P, Chen J, Dai F, et al. Chronology of relict lake deposits around the Suwalong paleo landslide in the upper Jinsha River, SE Tibetan Plateau: Implications to Holocene tectonic perturbations[J]. Geomorphology, 2017, 217: 193-203. http://www.onacademic.com/detail/journal_1000036137282010_e211.html

    [11]

    Dai F C, Deng J H. Development characteristics of landslide hazards in Three-rivers basin of southeast Tibetan Plateau[J]. Advanced Engineering Sciences, 2020, 52(5): 3-15.

    [12]

    Lv L Q, Xu M Z, Wang Z Y, et al. Impact of densely distributed debris flow dams on river morphology of the Grand Canyon of the Nu River (upper Salween River) at the east margin of the Tibetan Plateau[J]. Landslides, 2021, 18(5): 979-991. http://www.researchgate.net/publication/345416446_Impact_of_densely_distributed_debris_flow_dams_on_river_morphology_of_the_Grand_Canyon_of_the_Nu_River_upper_Salween_River_at_the_east_margin_of_the_Tibetan_Plateau

    [13]

    Hu M M, Wu Z H, Reicherter K, et al. A Historical Earthquake-Induced Landslide Damming Event at the Qiaojia Reach of the Jinsha River, SE Tibetan Plateau: Implication for the Seismic Hazard of the Xiaojiang Fault[J]. Frontiers in Earth Science, 2021, (9): 1-25. http://www.researchgate.net/publication/349138539_A_historical_earthquake-induced_landslide_damming_event_at_the_Qiaojia_reach_of_the_Jinsha_River_SE_Tibetan_Plateau_implication_for_the_seismic_hazard_of_the_Xiaojiang_Fault

    [14]

    Xiong Z Q, Feng G C, Feng Z X, et al. Pre-and post-failure spatial-temporal deformation pattern of the Baige landslide retrieved from multiple radar and optical satellite images[J]. Engineering Geology, 2020, 279(11): 105880. http://www.sciencedirect.com/science/article/pii/S0013795220317774

    [15]

    An H C, Ouyang C J, Zhou S. Dynamic process analysis of the Baige landslide by the combination of DEM and long-period seismic waves[J]. Landslides, 2021, 3: 1625-1639. doi: 10.1007/s10346-020-01595-0

    [16]

    Lu C F, Cai C X. Challenges and Countermeasures for Construction Safety during the Sichuan-Tibet Railway Project[J]. Engineering, 2019, 5(5): 833-838. doi: 10.1016/j.eng.2019.06.007

    [17]

    郭长宝, 吴瑞安, 蒋良文, 等. 川藏铁路雅安-林芝段典型地质灾害与工程地质问题[J]. 现代地质, 2021, 35(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202101002.htm

    [18]

    汤明高, 许强, 马和平, 等. 西藏昌都镇地质灾害发育特征及防治对策[J]. 中国地质灾害与防治学报, 2006, 17(4): 11-16. doi: 10.3969/j.issn.1003-8035.2006.04.003

    [19]

    苏鹏程, 韦方强. 澜沧江流域滑坡泥石流空间分布及危险性分区[J]. 资源科学, 2014, 36(2): 273-281. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201402008.htm

    [20]

    刘欢, 朱谷昌, 刘海利, 等. 基于RS和GIS的西藏昌都县地质灾害危险性评价[J]. 地质找矿论丛, 2011, 26(1): 102-107. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201101020.htm

    [21]

    张佳佳, 高波, 刘建康, 等. 基于SBAS-InSAR技术的川藏铁路澜沧江段滑坡隐患早期识别[J]. 现代地质, 2021, 35(1): 64-73. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202101008.htm

    [22]

    彭勇民. 昌都地区三叠纪层序地层与沉积盆地演化[D]. 成都理工学院博士学位论文, 1999.

    [23]

    Hooper A, Bekaert D, Spaans K, et al. Recent advances in SAR interferometry time series analysis for measuring crustal deformation[J]. Tectonophysics, 2012, 514/517: 1-13. doi: 10.1016/j.tecto.2011.10.013

    [24]

    蓝康文. 川藏铁路高山峡谷边坡卸荷带变形破坏模式及稳定性研究[D]. 西南交通大学硕士学位论文, 2018.

    [25]

    邹俊. 高寒山区深切峡谷碎裂松动岩体发育特征及稳定性研究[D]. 成都理工大学硕士学位论文, 2016.

    [26]

    程强, 寇小兵, 黄绍槟, 等. 中国红层的分布及地质环境特征[J]. 工程地质学报, 2004, 12(1): 34-41. doi: 10.3969/j.issn.1004-9665.2004.01.007

    [27]

    殷跃平, 胡瑞林. 三峡库区巴东组(T2b)紫红色泥岩工程地质特征研究[J]. 工程地质学报, 2004, 12(2): 124-136. doi: 10.3969/j.issn.1004-9665.2004.02.003

    [28]

    易劲松. 川东红层滑坡的形成条件与早期识别研究[D]. 成都理工大学硕士学位论文, 2015.

    [29]

    胡泽铭. 四川红层地区缓倾角滑坡成因机理研究[D]. 成都理工大学硕士学位论文, 2015.

    [30]

    李江, 许强, 王森, 等. 川东红层地区降雨入渗模式与岩质滑坡成因机制研究[J]. 岩石力学与工程学报, 2016, 35(A2): 4053-4062. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2066.htm

    [31]

    张涛, 谢忠胜, 石胜伟, 等. 川东红层缓倾岩质滑坡的演化过程及其识别标志探讨[J]. 工程地质学报, 2017, 25(2): 496-503. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201702029.htm

    [32]

    张永双, 苏生瑞, 吴树仁, 等. 强震区断裂活动与大型滑坡关系研究[J]. 岩石力学与工程学报, 2011, 28(z2): 3503-3513. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2020.htm

    [33]

    张佳佳, 陈龙, 王军朝, 等. 藏东南鲁朗-通麦崩塌滑坡孕灾地质背景特征研究[J]. 地质力学学报, 2018, 24(4): 474-481. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201804012.htm

    [34]

    戴福初, 邓建辉. 青藏高原东南三江流域滑坡灾害发育特征[J]. 工程科学与技术, 2020, 52(5): 3-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202005002.htm

    西藏自治区水利电力规划勘测设计研究院. 西藏昌都澜沧江河道治理工程(西藏)水文报告. 西藏自治区水利电力规划勘测设计研究院, 2014.

  • 加载中

(11)

(2)

计量
  • 文章访问数:  2453
  • PDF下载数:  20
  • 施引文献:  0
出版历程
收稿日期:  2021-07-07
修回日期:  2021-08-26
刊出日期:  2021-12-15

目录