Origin and stability of landslides in Chaya County, Lancang River Basin, Tibet
-
摘要:
地球内外动力耦合叠加人类工程活动下的大型滑坡灾害是青藏高原工程建设面临的工程地质问题之一。针对在澜沧江流域察雅县城南侧斜坡新发现的9处大型—特大型滑坡,采取野外调查、试验测试和数值计算,分析了滑坡的特征、成因和现状稳定性。结果表明:①察雅县城滑坡具有规模大、切割深、地形阻止系数大等特征,滑坡堆积体现状具有多期蠕滑变形,表现为牵引式滑移的变形破坏特点,再次活动主要与降雨、河流侵蚀、人类工程活动等因素有关;②综合滑坡的发育特征、运动特征、物质结构与组成、断层与历史地震4个方面,初步判断察雅县城滑坡的诱发因素为内动力地质作用,为历史地震滑坡;③古妥尔滑坡堆积体在天然状态下处于基本稳定-稳定状态,在强降雨状态下滑坡前缘局部或整体处于欠稳定状态,较易-易发生滑动。新发现的大型—特大型滑坡拓宽了青藏高原"三江"地区地震滑坡的分布范围,对研究昌都及周边地区的地震历史、断裂活动性、地貌形成演化等方面提供了重要的佐证资料,滑坡堆积体现状稳定性分析结果可为县城的扩建及地质灾害风险管控提供一些参考。
Abstract:Large-scale landslide disasters under the coupling of internal and external dynamics of the earth and human engineering activities are one of the engineering geological problems faced by major engineering constructions on the Qinghai-Tibet Plateau. Based on the field investigation, experimental test and numerical calculation of the newly discovered 9 large-extra large landslides on the southern slope of Chaya County in the Lancang River Region, the characteristics, causes and current stability of the landslides were analyzed. The results show that the Chaya landslide has the characteristics of large scale, deep cutting, and large topographic blocking coefficient; the landslide accumulation is represented by multi-stage creep deformation characterized by traction slip; and the deformation is mainly related to factors such as rainfall, river erosion and human engineering activities. The integration of the development characteristics, movement features, material structure and composition, faults and historical earthquakes of the landslides indicates that the inducing factor of the landslide in Chaya County is internal dynamic earthquake action, and it is a historical earthquake landslide. The Guttor landslide accumulation body is basically stable or stable in its natural state, and the front edge of the landslide is in a partially or overall under-stable state under heavy rainfall conditions, which is relatively easy to slip. The newly discovered large-extra-large ancient landslide provides important supporting information for the study of the earthquake history, fault activity and geomorphological evolution of Changdu and surrounding areas. The evaluation results of current stability of landslide accumulations can provide some scientific basis for the expansion of the county and the risk management as well as control of geological disasters.
-
-
图 9 地震与非地震滑坡体积与地形阻止系数关系[18]及与察雅滑坡的对比
Figure 9.
表 1 察雅县城滑坡群各滑坡基本特征
Table 1. Basic characteristics of the landslides in Chaya County
编号 滑坡名称 滑动方向 最大滑移距离/m 前后缘最大高差/m 质心高度/m 长×宽/m 长宽比 堆积体平均厚度/m 体积/m3 平均坡度 后缘距分水岭距离/m 地形阻止系数 H1 古妥尔滑坡 0° 2200 880 490 2200×500 3.7 30 2300×104 9° 280 0.22 H2 司布日学滑坡 0° 2300 960 310 1200×650 1.8 35 2200×104 8° 310 0.23 H3 德日东滑坡 9° 2400 1040 550 2100×500 4.2 40 3360×104 25° 250 0.30 H4 德日西滑坡 4° 1600 820 430 1070×850 1.3 35 2400×104 31° 610 0.39 H5 察雅县中学南侧滑坡 28° 1340 760 370 1000×500 2.0 35 1130×104 30° 150 0.42 H6 中铝新村南东侧滑坡 55° 1170 680 380 630×690 0.9 20 600×104 28° 370 0.42 H7 中铝新村南西侧1#滑坡 42° 1070 560 320 900×325 2.8 40 880×104 29° 630 0.36 H8 中铝新村南西侧2#滑坡 22° 1200 660 390 850×375 2.3 30 620×104 23° 120 0.39 H9 中铝新村南西侧3#滑坡 26° 1300 720 330 1100×510 2.2 40 1900×104 29° 250 0.42 表 2 研究区不同降雨频率下的年最大日降雨量估算结果
Table 2. Calculated results of maximum daily rainfall in a year at different frequencies
P/% KP H24P/mm 1 1.436 55.14 2 1.374 52.76 10 1.212 46.54 表 3 模型物理力学参数
Table 3. Physical and mechanical parameters of the model
材料 天然容重/(kN·m-3) C/kPa φ/° 后部滑坡体 26.2 9.8 25.6 中前部滑坡体 25.8 10.3 25.2 前部滑坡体 25.5 10.5 24.6 基岩层(泥质粉砂岩) 24 16.2 8.5 表 4 古妥尔滑坡堆积体稳定性计算结果
Table 4. Calculation results of stability for Gutour landslide
滑坡体编号 L1 L2 L3 L4 L5 工况一 天然状态 1.939 1.722 1.109 1.18 1.101 工况二 10年一遇降雨 1.933 1.592 1.113 1.147 1.077 工况三 50年一遇降雨 1.915 1.575 1.104 1.066 1.032 工况四 100年一遇降雨 1.903 1.487 1.099 1.059 1.006 -
[1] 王思敬. 地球内外动力耦合作用与重大地质灾害的成因初探[J]. 工程地质学报, 2002, 10(2): 115-117. doi: 10.3969/j.issn.1004-9665.2002.02.001
[2] Scheidegger A E. Tectonic Predesign of Mass Movements, with Examples from the Chinese Himalaya[J]. Geomorphology, 1998, 26(1/2/3): 37-46. http://www.sciencedirect.com/science/article/pii/S0169555X98000506
[3] Martel S J. Mechanics of Landslide Initiation as a Shear F racture Phenomenon[J]. Marine Geology, 2004, 203(3/4): 319-339. http://www.soest.hawaii.edu/martel/Martel.pubs.pdf/Martel_2004_Marine_Geo.pdf
[4] 居恢扬. 断裂构造对滑坡的控制意义[C]//滑坡文集: 第三集. 北京: 中国铁道出版社, 1982: 47-55.
[5] 吴玮江, 王念秦. 甘肃滑坡灾害[M]. 兰州: 兰州大学出版社, 2006: 82-87.
[6] Scheidegger A E, 艾南山. 武都地区的滑坡和泥石流[J]. 水土保持学报, 1987, 1(2): 19-27. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS198702002.htm
[7] 张永双, 苏生瑞, 吴树仁, 等. 强震区断裂活动与大型滑坡关系研究[J]. 岩石力学与工程学报, 2011, 30(增刊2): 3503-3513. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2020.htm
[8] 许强, 黄润秋. 5·12汶川大地震诱发大型崩滑灾害动力特征初探[J]. 工程地质学报, 2008, 16(6): 721-729. doi: 10.3969/j.issn.1004-9665.2008.06.001
[9] 黄润秋, 李为乐. 5·12汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报, 2008, 27(12): 2585-2592. doi: 10.3321/j.issn:1000-6915.2008.12.028
[10] 杨为民, 黄晓, 张春山, 等. 白龙江流域坪定-化马断裂带滑坡特征及其形成演化[J]. 吉林大学学报: 地球科学版, 2014, 44(2): 574-583. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201402017.htm
[11] 李晓, 李守定, 陈剑, 等. 地质灾害形成的内外动力耦合作用机制[J]. 岩石力学与工程学报, 2008, 27(9): 1792-1806. doi: 10.3321/j.issn:1000-6915.2008.09.006
[12] 吴树仁, 王涛, 石玲, 等. 2008汶川大地震极端滑坡事件初步研究[J]. 工程地质学报, 2010, 18(2): 145-159. doi: 10.3969/j.issn.1004-9665.2010.02.001
[13] 邹谨敞, 邵顺妹. 海原地震滑坡及其分布特征探讨[J]. 内陆地震, 1996, (1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-LLDZ601.000.htm
[14] 乔彦肖, 马中社, 吕凤军. 汶川地震地质灾害发育特点及动因机制分析[J]. 中国地质, 2009, 36(3): 736-741. doi: 10.3969/j.issn.1000-3657.2009.03.020
[15] 邓龙胜, 范文. 宁夏海原8.5级地震诱发黄土滑坡的变形破坏特征及发育机理[J]. 灾害学, 2013, 28(3): 30-37. doi: 10.3969/j.issn.1000-811X.2013.03.007
[16] 蒋瑶, 吴中海, 李家存, 等. 2010年玉树7.1级地震诱发滑坡特征及其地震地质意义[J]. 地质学报, 2014, 88(6): 1157-1176. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201406016.htm
[17] 殷跃平. 汶川八级地震滑坡特征分析[J]. 工程地质学报, 2009, 17(1): 29-38. doi: 10.3969/j.issn.1004-9665.2009.01.004
[18] 樊晓一. 地震与非地震诱发滑坡的运动特征对比研究[J]. 岩土力学, 2010, 31(S2): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2010S2008.htm
[19] 潘桂棠, 李兴振, 王立全, 等. 青藏高原及邻区大地构造单元初步划分[J]. 地质通报, 2002, 21(11): 701-707. doi: 10.3969/j.issn.1671-2552.2002.11.002 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2002011160&flag=1
[20] 安显银, 王启宇, 李勇, 等. 西藏昌都市察雅地区侏罗纪恐龙化石新发现[J]. 地质通报, 2021, 40(1): 189-193. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20210115&flag=1
[21] 秦四清, 李国梁, 薛雷, 等. 中国西南地区某些地震区未来震情研判[J]. 地球物理学进展, 2013, 28(5): 2407-2432. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201305022.htm
[22] 秦四清, 薛雷, 黄鑫, 等. 西藏地区未来强震预测[J]. 地球物理学进展, 2010, 25(6): 1879-1886. doi: 10.3969/j.issn.1004-2903.2010.06.001
[23] 钟康惠, 刘肇昌, 舒良树, 等. 澜沧江断裂带的新生代走滑运动学特点[J]. 地质论评, 2004, (1): 1-8. doi: 10.3321/j.issn:0371-5736.2004.01.001
[24] 郭长宝, 吴瑞安, 蒋良文, 等. 川藏铁路雅安-林芝段典型地质灾害与工程地质问题[J]. 现代地质, 2021, 35(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202101002.htm
[25] 王腾, 孙晓光, 李白萍. 昌都市近36a暴雨气候特征分析[J]. 暴雨灾害, 2017, 36(1): 75-80. doi: 10.3969/j.issn.1004-9045.2017.01.010
[26] 张树轩, 杨为民, 程小杰, 等. 甘肃天水红旗山黄土滑坡群成因及稳定性分析[J]. 中国地质, 2017, 44(5): 924-937. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201705008.htm
[27] 陈永明, 石玉成. 中国西北黄土地区地震滑坡基本特征[J]. 地震研究, 2006, 29(3): 276-280. doi: 10.3969/j.issn.1000-0666.2006.03.012
[28] 孟庆华, 孙炜锋, 张春山, 等. 陕西宝鸡地区胡家山滑坡风险性评价[J]. 地质通报, 2011, 30(7): 1155-1165. doi: 10.3969/j.issn.1671-2552.2011.07.018 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20110718&flag=1
-