煤系镓资源综合利用研究进展

丁国峰, 吕振福, 曹进成. 煤系镓资源综合利用研究进展[J]. 矿产综合利用, 2023, 44(3): 119-126. doi: 10.3969/j.issn.1000-6532.2023.03.020
引用本文: 丁国峰, 吕振福, 曹进成. 煤系镓资源综合利用研究进展[J]. 矿产综合利用, 2023, 44(3): 119-126. doi: 10.3969/j.issn.1000-6532.2023.03.020
Ding Guofeng, Lv Zhenfu, Cao Jincheng. Research Progress on Comprehensive Utilization of Gallium Resources in Coal Measures[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(3): 119-126. doi: 10.3969/j.issn.1000-6532.2023.03.020
Citation: Ding Guofeng, Lv Zhenfu, Cao Jincheng. Research Progress on Comprehensive Utilization of Gallium Resources in Coal Measures[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(3): 119-126. doi: 10.3969/j.issn.1000-6532.2023.03.020

煤系镓资源综合利用研究进展

  • 基金项目: 中国地质调查局基础地质调查项目(DD20190573)
详细信息
    作者简介: 丁国峰(1989-),男,硕士研究生,主要研究方向为矿产资源综合利用和标准化研究工作
  • 中图分类号: TD983

Research Progress on Comprehensive Utilization of Gallium Resources in Coal Measures

  • 这是一篇矿业工程领域的论文。镓在半导体、光伏发电等高科技领域具有广泛的应用前景,尤其随着半导体行业的飞速发展,人们对镓的需求量快速增长。镓在自然界并没有独立的矿床,从我国资源量和产量巨大的煤炭中回收镓资源不仅可以大大缓解镓供应紧张的局面,还可以提高资源综合利用效率,减少环境污染。本文综述了煤系镓的赋存状态和分布特征,结合我国煤炭开发利用现状分析了煤系镓资源综合利用特征,重点介绍了以粉煤灰中镓的浸出、分离方法研究现状,总结了现有研究面临的挑战与问题,提出了煤系镓资源综合利用若干建议,以期为我国煤系镓资源综合利用提高参考。

  • 加载中
  • [1]

    冯建广, 高增, 王振江, 等. 镓在工业生产中的提取与应用[J]. 硅酸盐通报, 2018, 37(9):2852-2856+2861. FENG G J, GAO Z, WANG Z J, et al. Extraction and application of gallium in industrial manufacture[J]. Bulletin of The Chinese Ceramic Society, 2018, 37(9):2852-2856+2861. doi: 10.16552/j.cnki.issn1001-1625.2018.09.029

    FENG G J, GAO Z, WANG Z J, et al. Extraction and application of gallium in industrial manufacture [J]. Bulletin of The Chinese Ceramic Society , 2018, 37(9): 2852-2856+2861. doi: 10.16552/j.cnki.issn1001-1625.2018.09.029

    [2]

    武秋杰, 吕振福, 曹进成, 等. 国内外镓资源分布供需及镓产业链发展现状研究[J]. 矿产综合利用, 2021(5):38-44. WU Q J, LV Z F, CAO J C, et al. Study on distribution and supply of gallium resources domestically and abroad and the present situation of the industry chain of gallium[J]. Multipurpose Utilization of Mineral Resources, 2021(5):38-44.

    WU Q J, LV Z F, CAO J C, et al. Study on distribution and supply of gallium resources domestically and abroad and the present situation of the industry chain of gallium[J]. Multipurpose Utilization of Mineral Resources, 2021(5): 38-44.

    [3]

    Xiong Y, Cui X X, Wang D D, et al. Diethanolamine functionalized rice husk for highly efficient recovery of gallium(III) from solution and a mechanism study[J]. Materials Science and Engineering:C, 2019, 99:1115-1122. doi: 10.1016/j.msec.2019.02.028

    [4]

    芦小飞, 王磊, 王新德, 等. 金属镓提取技术进展[J]. 有色金属, 2008, 60(4):105-108+114. LU X F, WANG L, WANG X D, et al. Progress in extraction technology of gallium[J]. Nonferrous Metals, 2008, 60(4):105-108+114.

    LU X F, WANG L, WANG X D, et al. Progress in extraction technology of gallium[J]. Nonferrous Metals , 2008, 60(4): 105-108+114.

    [5]

    潘昭帅, 张照志, 张泽南, 等. 中国铝土矿进口来源国国别研究[J]. 中国矿业, 2019, 28(2):13-17+24. PAN S S, ZHANG Z Z, ZHANG Z N, et al. Analysis of the import source country of the bauxite in China[J]. China Mining Magazine, 2019, 28(2):13-17+24.

    PAN S S, ZHANG Z Z, ZHANG Z N, et al. Analysis of the import source country of the bauxite in China [J]. China Mining Magazine, 2019, 28(2): 13-17+24.

    [6]

    陈喜峰. 中国铝土矿资源勘查开发现状及可持续发展建议[J]. 资源与产业, 2016, 18(3):16-22. CHEN X F. Exploration and sustainable development suggestions for China ’s bauxite resource[J]. Resources & Industries, 2016, 18(3):16-22.

    CHEN X F. Exploration and sustainable development suggestions for China ’s bauxite resource [J]. Resources & Industries, 2016, 18(3): 16-22.

    [7]

    代世峰, 任徳贻, 周义平, 等. 煤型稀有金属矿床: 成因类型、赋存状态和利用评价[J]. 煤炭学报, 2014, 39(8):1707-1715. DAI S F, REN D Y, ZHOU Y P, et al. Coal-hosted rare metal deposits: genetic types, modes of occurrence, and utilization evaluation[J]. Journal of China Society, 2014, 39(8):1707-1715.

    DAI S F, REN D Y, ZHOU Y P, et al. Coal-hosted rare metal deposits: genetic types, modes of occurrence, and utilization evaluation[J]. Journal of China Society, 2014, 39(8): 1707-1715.

    [8]

    RAMAGE, HUGH. Gallium in Flue Dust[J]. Nature, 1927, 119(3004):783-783.

    [9]

    代世峰, 赵蕾, 魏强, 等. 中国煤系中关键金属资源: 富集类型与分布[J]. 科学通报, 2020, 65(33):3715-3729. DAI S F, ZHAO L, WEI Q, et al. Resources of critical metals in coal-bearing sequences in China: Enrichment types and distribution[J]. China Sci Bull, 2020, 65(33):3715-3729. doi: 10.1360/TB-2020-0112

    DAI S F, ZHAO L, WEI Q, et al. Resources of critical metals in coal-bearing sequences in China: Enrichment types and distribution (in Chinese)[J]. China Sci Bull, 2020, 65(33): 3715-3729. doi: 10.1360/TB-2020-0112

    [10]

    代世峰, 任德贻, 李生盛. 内蒙古准格尔超大型镓矿床的发现[J]. 科学通报, 2006(2):177-185. DAI S F, REN D Y, LI S S. Discovery of super large gallium deposit in Jungar, Inner Mongolia[J]. China SCI Bull, 2006(2):177-185. doi: 10.3321/j.issn:0023-074X.2006.02.011

    DAI S F, REN D Y, LI S S. Discovery of super large gallium deposit in Jungar, Inner Mongolia[J]. China SCI Bull, 2006(2): 177-185. doi: 10.3321/j.issn:0023-074X.2006.02.011

    [11]

    陈磊. 煤中镓元素的赋存特征与富集机理——以青海木里和新疆准东煤田为例[D]. 成都: 成都理工大学, 2019.

    CHEN L. Occurrence characteristics and enrichment mechanism of germanium and gallium in coal-a case study of Muli Coalfield in Qinghai and Zhundong Coalfield in Xinjiang[D]. Chengdu: Chengdu University of Technology, 2019.

    [12]

    Dai S, Luo Y, Seredin V V, et al. Revisiting the late Permian coal from the Huayingshan, Sichuan, southwestern China: Enrichment and occurrence modes of minerals and trace elements[J]. International Journal of Coal Geology, 2014, 122:110-128. doi: 10.1016/j.coal.2013.12.016

    [13]

    王文峰, 秦勇, 刘新花, 等. 内蒙古准格尔煤田煤中镓的分布赋存与富集成因[J]中国科学: 地球科学, 2011, 41(2): 181-196

    WANG W F, QIN Y, LIU X H, et al. Distribution, occurrence and enrichment causes of gallium in coals from the Jungar Coalfield, Inner Mongolia. Sci: China Earth Sci, 2011, 41(2): 181-196.

    [14]

    唐修义, 黄文辉. 中国煤中微量元素[M]. 北京: 商务印刷馆, 2004.93-98.

    TANG X Y, HUANG W H. Trace elements in Chinese coal [M]. Beijing: The Commercial Press, 2004.93-98.

    [15]

    Ketris M P, Yudovich Y E. Estimations of Clrkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int J Coal Geol, 2009, 78: 135-148.

    [16]

    Dai S F, LiD, Chou CL, et al. Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu Suface Mine, Jungar Coalfield, Inner Mongolia, China. Int J Coal Geol, 2008, 74: 185-202.

    [17]

    曾青云. 从粉煤灰中提取金属镓的实验研究[D]. 北京: 中国地质大学(北京), 2007.

    ZENG Q Y. Recovery of gallium from fly ash: An experimental study [D]. Beijing: China University of Geosciences(Beijing), 2007.

    [18]

    李瑞琼. 木里煤田镓元素富集规律研究[D]. 西安: 西安科技大学, 2018.

    LI R Q. Study on gallium concentration of Muli coalfield[D]. Xi’an: Xi’an University of Science and Technology, 2018.

    [19]

    刘汉斌, 马志斌, 郭彦霞, 等. 太原西山煤田煤系锂镓赋存特征及工业前景[J]. 洁净煤技术, 2018, 24(5):26-32. LIU H B, MA Z B, GUO Y X, et al. Occurrence characteristics and industrial prospects of lithium and gallium in coal in Taiyuan Xishan coalfield[J]. Clean Coal Technology, 2018, 24(5):26-32. doi: 10.13226/j.issn.1006-6772.18050801

    LIU H B, MA Z B, GUO Y X, et al. Occurrence characteristics and industrial prospects of lithium and gallium in coal in Taiyuan Xishan coalfield[J]. Clean Coal Technology, 2018, 24(5): 26-32. doi: 10.13226/j.issn.1006-6772.18050801

    [20]

    高颖, 郭英海. 河东煤田北部煤中镓的分布特征及赋存机理分析[J]. 能源技术与管理, 2012(1):111-113+153. GAO Y, GUO Y H. Analysis on distribution characteristics and occurrence mechanism of gallium in coal of Northern East coalfield[J]. Energy Technology and Management, 2012(1):111-113+153. doi: 10.3969/j.issn.1672-9943.2012.01.044

    GAO Y, GUO Y H. Analysis on distribution characteristics and occurrence mechanism of gallium in coal of Northern East coalfield[J]. Energy Technology and Management, 2012(1): 111-113+153. doi: 10.3969/j.issn.1672-9943.2012.01.044

    [21]

    Ratafia-Brown J A. Overview of trace element partitioning in flames and furnaces of utility coal-fired boilers[J]. Fuel Processing Technology, 1994, 39(1-3):139-157. doi: 10.1016/0378-3820(94)90177-5

    [22]

    Moskalyk R R. Gallium: The backbone of the electronics industry. Miner Engineering, 2003, 16: 921-929

    [23]

    竹涛, 韩一伟. 煤基固废高值化利用研究[J]. 中国煤炭, 2020, 46(12):86-94. ZHU T, HAN YW. Research on high-value utilization of coal-based solid waste[J]. China Coal, 2020, 46(12):86-94. doi: 10.3969/j.issn.1006-530X.2020.12.013

    ZHU T, HAN YW. Research on high-value utilization of coal-based solid waste [J]. China Coal, 2020, 46(12): 86-94. doi: 10.3969/j.issn.1006-530X.2020.12.013

    [24]

    赵泽森, 崔莉, 郭彦霞, 等. 粉煤灰中战略金属镓的提取与回收研究进展[J]. 化工学报, 2021, 72(6):3239-3251. ZHAO Z S, CUI L, GUO Y X, et al. Research progress on extraction and recovery of strategic metal gallium from coal fly ash[J]. Journal of Chemical Industry and Engineering (China), 2021, 72(6):3239-3251. doi: 10.11949/0438-1157.20201400

    ZHAO Z S, CUI L, GUO Y X, et al. Research progress on extraction and recovery of strategic metal gallium from coal fly ash[J]. Journal of Chemical Industry and Engineering (China) , 2021, 72(6): 3239-3251. doi: 10.11949/0438-1157.20201400

    [25]

    白光辉, 滕玮, 孙亦兵, 等. 粉煤灰酸法提镓探索研究[J]. 应用化工, 2008, 37(7):757-759. BAI G H, TENG W, SUN Y B, et al. Study on acid pre-extraction process for gallium from fly ash[J]. Applied Chemical Industry, 2008, 37(7):757-759.

    BAI G H, TENG W, SUN Y B, et al. Study on acid pre-extraction process for gallium from fly ash[J]. Applied Chemical Industry , 2008, 37(7): 757-759.

    [26]

    王永旺. 准格尔地区粉煤灰中镓的浸出率影响因素研究[J]. 世界地质, 2014, 33(3):730-734. WANG Y W. Study on influence factors of leaching rate of gallium from fly ash in Jungar area[J]. Global Geology, 2014, 33(3):730-734. doi: 10.3969/j.issn.1004-5589.2014.03.028

    WANG Y W. Study on influence factors of leaching rate of gallium from fly ash in Jungar area [J]. Global Geology , 2014, 33(3): 730-734. doi: 10.3969/j.issn.1004-5589.2014.03.028

    [27]

    张路平. 粉煤灰中镓富集与浸出工艺研究[D]. 武汉: 武汉科技大学, 2014.

    ZHANG L P. Study on enrichment and leaching of gallium from coal ash [D]. Wuhan: Wuhan University of Science and Technology, 2014.

    [28]

    柳丹丹. 粉煤灰酸法提铝过程SiO2强化分离及硅基材料制备研究[D]. 太原: 山西大学, 2019.

    LIU D D. Separation and utilization of silica from alumina extraction process of coal fly ash with acid leaching [D]. Taiyuan: Shanxi University, 2019.

    [29]

    徐梦, 辛志峰, 李婷, 等. 微波碱溶法对粉煤灰中镓浸出效果的影响研究[J]. 轻金属, 2016(6):16-20. XU M, XIN Z F, LI T, et al. Influence of microwave alkali dissolution method on gallium leaching effect from fly ash[J]. Light Metal, 2016(6):16-20. doi: 10.13662/j.cnki.qjs.2016.06.005

    XU M, XIN Z F, LI T, et al. Influence of microwave alkali dissolution method on gallium leaching effect from fly ash[J]. Light Metal, 2016(6): 16-20. doi: 10.13662/j.cnki.qjs.2016.06.005

    [30]

    赵彬. 高铝粉煤灰提取镓的工艺研究[D]. 邯郸: 河北工程大学, 2016.

    ZHAO B. Research on extraction of gallium from high aluminium in fly ash[D]. Handan: Hebei University of Engineering, 2016.

    [31]

    徐梦, 辛志峰, 李婷, 等. 水热碱溶法从粉煤灰中浸出镓的研究[J]. 矿冶工程, 2016, 36(4):68-71. XU M, XIN Z F, LI T, et al. Extraction of gallium from fly ash by hydrothermal process with alkali dissolution[J]. Mining and Metallurgical Engineering, 2016, 36(4):68-71. doi: 10.3969/j.issn.0253-6099.2016.04.018

    XU M, XIN Z F, LI T, et al. Extraction of gallium from fly ash by hydrothermal process with alkali dissolution[J]. Mining and Metallurgical Engineering, 2016, 36(4): 68-71. doi: 10.3969/j.issn.0253-6099.2016.04.018

    [32]

    Guo Y X, Zhao Z S, Zhao Q, et al. Novel process of alumina extraction from coal fly ash by pre-desilicating-Na2CO3 activation-acid leaching technique[J]. Hydrometallurgy, 2017, 169:418-425. doi: 10.1016/j.hydromet.2017.02.021

    [33]

    薄朋慧, 吴士豪, 王炎, 等. 粉煤灰中有价金属元素铝、镓、锂活化浸出提取研究进展[J]. 应用化工, 2019, 48(8):1924-1929. BO P H, WU S H, WANG Y, et al. Research progress of activated leaching and extraction of valuablealuminum, gallium and lithium metal elements from fly ash[J]. Applied Chemical Industry, 2019, 48(8):1924-1929. doi: 10.3969/j.issn.1671-3206.2019.08.036

    BO P H, WU S H, WANG Y , et al. Research progress of activated leaching and extraction of valuablealuminum, gallium and lithium metal elements from fly ash[J]. Applied Chemical Industry, 2019, 48(8): 1924-1929. doi: 10.3969/j.issn.1671-3206.2019.08.036

    [34]

    许富军, 许诺真. 三段碳酸化法生产金属镓[J]. 河南化工, 2002, 19(10):21-22. XU F J, XU N Z. Gallium production of three stage carbonization process[J]. Henan Chemical Industry, 2002, 19(10):21-22. doi: 10.3969/j.issn.1003-3467.2002.10.009

    XU F J, XU N Z. Gallium production of three stage carbonization process[J]. Henan Chemical Industry, 2002, 19(10): 21-22. doi: 10.3969/j.issn.1003-3467.2002.10.009

    [35]

    魏存弟, 杨殿范, 将引珊, 等. 从粉煤灰中提取金属镓的方法: 200810051209.5[P]. 2009-2-18.

    WEI C D, YANG D F, JIANG Y S, et al. Method for extracting metal gallium from fly ash: 200810051209.5[P]. 2009-2-18.

    [36]

    李金海, 曹明艳, 陈学文, 等. 络合沉降法提取粉煤灰中的镓[J]. 中国煤炭, 2013, 39(5):85-88. LI J H, CAO M Y, CHEN X W, et al. Extraction for gallium from fly ash by complexation determination[J]. China Coal, 2013, 39(5):85-88. doi: 10.3969/j.issn.1006-530X.2013.05.020

    LI J H, CAO M Y, CHEN X W, et al. Extraction for gallium from fly ash by complexation determination[J]. China Coal, 2013, 39(5): 85-88. doi: 10.3969/j.issn.1006-530X.2013.05.020

    [37]

    Zhou H T, Zhang XL, Lv T, et al. Comparative study of solvent extraction and supported liquid membrane for the extraction of gallium(III) from chloride solution using organophosphorus acids as extractants[J]. Separation Science and Technology, 2020, 55(16):3012-3027. doi: 10.1080/01496395.2019.1664583

    [38]

    Zhang K F, Liu Z Q, Liu Y, et al. Recovery of gallium from strong acidic sulphate leach solutions of zinc refinery residues using a novel phosphate ester extractant[J]. Hydrometallurgy, 2019, 185:250-256. doi: 10.1016/j.hydromet.2019.03.001

    [39]

    李宇亮, 彭悦欣, 徐永胜. 萃取-反萃取以提取酸溶液中的镓[J]. 科学技术与工程, 2014, 14(27):173-176. LI Y L, PENG Y X, XU Y S. Extract gallium in acid solution by extraction and back-extraction[J]. Science Technology and Engineering, 2014, 14(27):173-176. doi: 10.3969/j.issn.1671-1815.2014.27.034

    LI Y L, PENG Y X, XU Y S. Extract gallium in acid solution by extraction and back-extraction[J]. Science Technology and Engineering, 2014, 14(27): 173-176. doi: 10.3969/j.issn.1671-1815.2014.27.034

    [40]

    吕天然. 溶剂萃取法从粉煤灰中分离回收镓及机理研究[D]. 青岛: 青岛科技大学.

    LV T R. Recovering gallium from fly ash by solvent extraction and mechanism research[D]. Qingdao: Qingdao University of Science and Technology.

    [41]

    王莉平, 刘建, 崔玉卉. 聚氨酯泡沫塑料法从粉煤灰中回收镓研究[J]. 应用化工, 2014, 43(5):868-870+873. WANG L P, LIU J, CUI Y H. Study on adsorption and recovery of gallium from coal fly ash using polyurethane foaming plastic[J]. Applied Chemical Industry, 2014, 43(5):868-870+873. doi: 10.16581/j.cnki.issn1671-3206.2014.05.003

    WANG L P, LIU J, CUI Y H. Study on adsorption and recovery of gallium from coal fly ash using polyurethane foaming plastic[J]. Applied Chemical Industry, 2014, 43(5): 868-870+873. doi: 10.16581/j.cnki.issn1671-3206.2014.05.003

    [42]

    LONG H M, ZHAO Z, Chai Y Q, et al. Binding mechanism of the amidoxime functional group on chelating resins toward gallium(III) in bayer liquor[J]. Industrial & Engineering Chemistry Research, 2015, 54(33):8025-8030.

    [43]

    杜燕, 孙俊民, 杨会宾, 等. 高铝粉煤灰生产氧化铝过程中镓提取工艺[J]. 稀有金属材料与工程, 2016, 45(7):1893-1897. DU Y, SUN J M, YANG H B, et al. Recovery of gallium in the alumina production process from high-alumina coal fly ash[J]. Rare Metal Materials and Engineering, 2016, 45(7):1893-1897.

    DU Y, SUN J M, YANG H B, et al. Recovery of gallium in the alumina production process from high-alumina coal fly ash [J]. Rare Metal Materials and Engineering, 2016, 45(7): 1893-1897.

    [44]

    潘安标. 粉煤灰提取氧化铝、氧化镓、制取纳米氧化铝和聚硅酸硫酸铁的方法: 201110380162.9[P]. 2012-6-27.

    PAN A B. Method for extracting alumina and gallium oxide from fly ash and preparing nano alumina and polysilicate ferric sulfate: 201110380162.9[P]. 2012-6-27.

    [45]

    李会泉, 张建波, 王晨哗, 等. 高铝粉煤灰伴生资源清洁循环利用技术的构建与研究进展[J]. 洁净煤技术, 2018, 24(2):1-8. LI H Q, ZHANG J B, WANG C Y, et al. Construct and research advance in clean and cyclic utilizations of associated resources in high-alumina coal fly ash[J]. Clean Coal Technology, 2018, 24(2):1-8.

    LI H Q, ZHANG J B, WANG C Y, et al. Construct and research advance in clean and cyclic utilizations of associated resources in high-alumina coal fly ash[J]. Clean Coal Technology, 2018, 24(2): 1-8.

    [46]

    刘延红, 郭昭华, 池君洲, 等. 粉煤灰提取氧化铝工艺中镓的富集与走向[J]. 轻金属, 2015(8):15-20. LIU Y H, GUO Z H, CHI J Z, et al. Gallium enrichment and trend in extracting alumina process from fly ash[J]. Light Metals, 2015(8):15-20.

    LIU Y H, GUO Z H, CHI J Z, et al. Gallium enrichment and trend in extracting alumina process from fly ash [J]. Light Metals, 2015, (8): 15-20.

    [47]

    刘广义, 戴塔根. 富镓煤矸石的综合利用[J]. 中国资源综合利用, 2000(12):16-19. LIU G Y, DAI T G. Comprehensive utilization of gallium rich coal gangue[J]. China Resources Comprehensive Utilization, 2000(12):16-19.

    LIU G Y, DAI T G. Comprehensive utilization of gallium rich coal gangue [J]. China Resources Comprehensive Utilization, 2000(12): 16-19.

    [48]

    付元鹏. 浮选尾煤中矿物质及镓元素富集规律的研究[D]. 太原: 太原理工大学, 2017.

    FU Y P. Study on enrichment rule of minerals and gallium in flotation tailings [D]. Taiyuan: Taiyuan University of Technology, 2017.

    [49]

    秦勇, 王文峰, 程爱国, 等. 首批煤炭国家规划矿区煤中镓的成矿前景[J]. 中国煤炭地质, 2009, 21(1):17-21+26. QIN Y, WAGN W F, CHENG A G, et al. Study of ore-forming potential of gallium in coal for the first group of state programmed mining districts[J]. Coal Geology of China, 2009, 21(1):17-21+26. doi: 10.3969/j.issn.1674-1803.2009.01.006

    QIN Y, WAGN W F, CHENG A G, et al. Study of ore-forming potential of gallium in coal for the first group of state programmed mining districts[J]. Coal Geology of China, 2009, 21(1): 17-21+26. doi: 10.3969/j.issn.1674-1803.2009.01.006

    [50]

    Dai S, Jiang Y, Ward C R, et al. Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield[J]. International Journal of Coal Geology, 2012, 98(none):10-40.

    [51]

    范剑明. 高铝煤矸石铝硅分级提取实验研究[J]. 无机盐工业, 2019, 51(11):65-68. FAN J M. Study on sequential extraction experiment of aluminum and silicon from high-alumina coal gangue[J]. Inorganic Chemicals Industry, 2019, 51(11):65-68. doi: 10.11962/1006-4990.2019-0017

    FAN J M. Study on sequential extraction experiment of aluminum and silicon from high-alumina coal gangue [J]. Inorganic Chemicals Industry, 2019, 51(11): 65-68. doi: 10.11962/1006-4990.2019-0017

    [52]

    贾敏. 煤矸石综合利用研究进展[J]. 矿产保护与利用, 2019, 39(4):46-52. JIA M. The current situation research on comprehensive utilization of coal gangue[J]. Conservation and Utilization of Mineral Resources, 2019, 39(4):46-52. doi: 10.13779/j.cnki.issn1001-0076.2021.06.020

    JIA M. The current situation research on comprehensive utilization of coal gangue[J]. Conservation and Utilization of Mineral Resources , 2019, 39(4): 46-52. doi: 10.13779/j.cnki.issn1001-0076.2021.06.020

    [53]

    冯琳琳. 硫酸及硫酸盐焙烧活化粉煤灰中镓和铝的溶出特征研究[D]. 吉林: 吉林大学, 2016.

    FENG L L. Study on dissolution characteristics of gallium and aluminum from fly ash activated by roasting with sulfuric acid or sulfate[D]. Jilin: Jilin University, 2016.

  • 加载中
计量
  • 文章访问数:  2368
  • PDF下载数:  452
  • 施引文献:  0
出版历程
收稿日期:  2021-10-21
刊出日期:  2023-06-25

目录