Physical and Chemical Properties of Lithium Slag and Experiment on Preparation of Artificial Aggregate Using Alkali-activation
-
摘要:
这是一篇陶瓷及复合材料领域的论文。伴随着我国锂矿冶炼规模增长,锂渣产量逐年增加,其资源化利用的必要性日趋凸显。为探明锂渣的物化性能及其作为胶凝材料制备人造集料的潜力,首先通过实验表征了宜春市锂云母锂渣和澳大利亚锂辉石锂渣的组成和性能,并分析其对碱激发性能的影响。其次,以氢氧化钠为碱激发剂,采用圆盘冷造粒法制备了两种锂渣人造集料,并测试了其抗压强度。最后,通过玻璃电极法、电感耦合等离子体质谱法、离子色谱法和分光光度法等实验论证了人造集料的环境风险。结果表明:锂云母锂渣的物化性质较锂辉石锂渣更适合用于碱激发制备人造集料,所制得的人造集料强度更高,液体浸出物也不具有环境危害性。
Abstract:This is an article in the field of ceramics and composites. With the growth of lithium smelting scale in China, the production of lithium slag increases year by year, the need for its resource utilization is becoming more and more obvious. To explore the physical and chemical properties of lithium slag and its potential as a cementitious material to prepare artificial aggregate, the composition and properties of lithium mica lithium slag in Yichun, China and lithium slag from spodumene in Australia were characterized, and their effects on alkali excitation performance were analyzed. Secondly, two kinds of lithium slag artificial aggregates were prepared by disk cold granulation method with sodium hydroxide as alkali activator, and their compressive strength was tested. Finally, the environmental risks of artificial aggregates were demonstrated by glass electrode method, inductively coupled plasma mass spectrometry, ion chromatography and spectrophotometry. The results show that the physical and chemical properties of lithium mica lithium slag are more suitable for the preparation of artificial aggregates by alkali excitation than lithium pyroxene lithium slag, and the resulting artificial aggregates are stronger and the liquid leachate is not environmentally hazardous.
-
-
表 1 锂云母锂渣和锂辉石锂渣的主要化学成分/%
Table 1. Chemical composition of lithium mica slag and lithium flint lithium slag
化合物 SiO2 Al2O3 Na2O K2O CaO F2O3 Rb2O MgO MnO SrO Y2O3 Cs2O3 SO3 F 锂云母锂渣 20.85 17.22 3.01 5.36 28.55 3.21 1.56 1.26 1.02 0.30 0.26 0.21 13.21 3.57 锂辉石锂渣 39.51 20.06 0.28 0.82 19.62 4.67 0.18 1.22 0.32 0.06 0 0.11 12.90 0 表 2 锂云母锂渣和锂辉石锂渣的氧化锂含量
Table 2. Lithium oxide content of lithium mica slag and lithium flint lithium slag
锂渣 测试溶液
元素浓度
Co/(mg/L)稀释
倍数f消解液/原样品
溶液元素浓度
C1/(mg/L)样品元素
含量Cx/
(mg/kg)样品元素
含量
W/%锂云母 0.67 10 6.69 2404.83 0.24% 锂辉石 1.94 1 1.94 939.92 0.09% 表 3 锂云母锂渣固废浸出液检测结果
Table 3. Test results of solid waste leaching solution of lithium mica lithium slag
检测项目 检测方法 仪器设备 最低标准 检测结果 pH值 玻璃电极法 pH计 — 8.46 Be 电感耦合等离子体质谱法 电感耦合等离子体质谱仪 20 μg/L 0.24 μg/L Zn 电感耦合等离子体质谱法 电感耦合等离子体质谱仪 100 mg/L 1.10 μg/L 氟化物 离子色谱法 离子色谱仪 100 mg/L 11.9 mg/L 氰化物 分光光度法 蒸馏装置及分光光度计 5 mg/L 未检测出 -
[1] 蒋晨啸, 陈秉伦, 张东钰, 等. 我国盐湖锂资源分离提取进展[J]. 化工学报, 2022, 73(2):481-503.JIANG C X, CHEN B L, ZHANG D Y, et al. Progress in isolating resources from China salt lakes brine[J]. CIESC Journal, 2022, 73(2):481-503.
JIANG C X, CHEN B L, ZHANG D Y, et al . Progress in isolating resources from China salt lakes brine[J]. CIESC Journal,2022 ,73 (2 ):481 -503 .[2] 王丁, 陈树. 锂云母-氧化钙高压蒸汽法提锂工艺研究[J]. 应用化工, 2020, 49(12):3043-3045.WANG D, CHEN S. Study on the process of extracting lithium from lepidolite-calcium oxide by high pressure steam[J]. Applied Chemical Industry, 2020, 49(12):3043-3045. doi: 10.3969/j.issn.1671-3206.2020.12.019
doi: 10.3969/j.issn.1671-3206.2020.12.019WANG D, CHEN S . Study on the process of extracting lithium from lepidolite-calcium oxide by high pressure steam[J]. Applied Chemical Industry,2020 ,49 (12 ):3043 -3045 .[3] Samoilov V I, Onalbaeva Z S, Adylkanova М А, et al. Complex loosening of lepidolite concentrate by sulfuric acid[J]. Metallurgist, 2018, 62(1):29-33.
[4] 何飞, 高利坤, 饶兵, 等. 从锂云母中提锂及综合利用的研究进展[J/OL]. 矿产综合利用: 1-9[2022-11-01].HE F, GAO L K, RAO B, et al. Research progress on lithium extraction and comprehensive utilization from lepidolite[J/OL]. Multipurpose Utilization of Mineral Resources, 1-9[2022-11-01].
HE F, GAO L K, RAO B, et al. Research progress on lithium extraction and comprehensive utilization from lepidolite[J/OL]. Multipurpose Utilization of Mineral Resources, 1-9[2022-11-01]. [5] TAN H B, ZHANG X, HE X, et al. Utilization of lithium slag by wet-grinding process to improve the early strength of sulphoaluminate cement paste[J]. Journal of Cleaner Production, 2018, 205:536-551. doi: 10.1016/j.jclepro.2018.09.027
[6] TAN H B, Li X G, He C, et al. Utilization of lithium slag as an admixture in blended cements: Physico-mechanical and hydration characteristics[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed, 2015, 30(1):129-133. doi: 10.1007/s11595-015-1113-x
[7] ZHANG L, LV S Z, LIU Y, et al. Influence of lithium slag on cement properties[J]. Journal of Wuhan University of Technology, 2015, 37(3):23-27.
[8] THOMS J, HARILAL B. Properties of cold bonded quarry dust coarse aggregates and its use in concrete[J]. Cement and Concrete Composites, 2015, 62:67-75. doi: 10.1016/j.cemconcomp.2015.05.005
[9] KUEHL H. Slag cement and process of making the same: US, 900939, A[P]. 1908-10-13.
[10] RAKHIMOVA N R, RAKHIMOV R Z. Toward clean cement technologies: A review on alkali-activated fly-ash cements incorporated with supplementary materials[J]. Journal of Non-Crystalline Solids, 2019, 509:31-41. doi: 10.1016/j.jnoncrysol.2019.01.025
[11] Kiventer J, Perumal P, Yliniemi J, et al. Mine tailings as a raw material in alkali activation: A review[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(8):1009-1020. doi: 10.1007/s12613-020-2129-6
[12] 陈志友, 苏小琼, 杨志文, 等. 锂云母锂渣性质及利用研究现状[J]. 硅酸盐通报, 2021, 40(3):877-882.CHEN Z Y, SU X Q, YANG Z W, et al. Research status of properties and utilization of lepidolite lithium Slag[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(3):877-882. doi: 10.16552/j.cnki.issn1001-1625.2021.03.018
doi: 10.16552/j.cnki.issn1001-1625.2021.03.018CHEN Z Y, SU X Q, YANG Z W, et al . Research status of properties and utilization of lepidolite lithium Slag[J]. Bulletin of the Chinese Ceramic Society,2021 ,40 (3 ):877 -882 .[13] 余裕森, 崔立雪, 王云帆, 等. 锂云母提锂技术的研究进展[J/OL]. 中国有色金属学报: 1-32[2022-11-01].YU Y S, CUI L X, WANG Y F, et al. Research progress of lithium extraction technology from lepidolite[J]. The Chinese Journal of Nonferrous Metals, 1-32[2022-11-01].
YU Y S, CUI L X, WANG Y F, et al. Research progress of lithium extraction technology from lepidolite[J]. The Chinese Journal of Nonferrous Metals, 1-32[2022-11-01]. [14] 李保亮, 尤南乔, 朱国瑞, 等. 蒸养条件下锂渣复合水泥的水化产物与力学性能[J]. 材料导报, 2019, 33(24): 4072-4077. LI B L, YOU N Q, ZHU G R, et al.Hydration products and mechanical properties of steam curedlithium slag blended cement[J]. Materials Reports, 2019, 33(24): 4072-4077.
Hydration products and mechanical properties of steam curedlithium slag blended cement[J]. Materials Reports, 2019, 33(24): 4072-4077. [15] 李保亮, 尤南乔, 曹瑞林, 等. 锂渣粉的组成及在水泥浆体中的物理与化学反应特性[J]. 材料导报, 2020, 34(10):10046-10051.LI B L, YOU N Q, CAO R L, et al. Composition of lithium slag powder and its physical and chemical reaction characteristics in cement paste[J]. Materials Reports, 2020, 34(10):10046-10051. doi: 10.11896/cldb.19060173
doi: 10.11896/cldb.19060173LI B L, YOU N Q, CAO R L, et al . Composition of lithium slag powder and its physical and chemical reaction characteristics in cement paste[J]. Materials Reports,2020 ,34 (10 ):10046 -10051 .[16] 王核, 黄亮, 白洪阳, 等. 中国锂资源的主要类型、分布和开发利用现状: 评述和展望[J/OL]. 大地构造与成矿学: 1-19[2022-11-01].WANG H, HUANG L, BAI H Y, et al. Types, distribution, development and utilization of lithium mineral resources in China: review and perspective[J/OL]. Geotectonica et Metallogenia, 1-19[2022-11-01].
WANG H, HUANG L, BAI H Y, et al. Types, distribution, development and utilization of lithium mineral resources in China: review and perspective[J/OL]. Geotectonica et Metallogenia, 1-19[2022-11-01]. [17] NATH S K, KUMAR S. Evaluation of the suitability of ground granulated silico-manganese slag in Portland slag cement[J]. Construction & Building Materials, 2016, 125(OCT.30):127-134.
[18] ZHAO B, JAK E, HAYES P C, et al. Phase equilibria in high MgO ferro-manganese and silico-manganese smelting slags[J]. ISIJ International, 2005, 45(7):1019-1026. doi: 10.2355/isijinternational.45.1019
-