Performance Research and Infrared Spectroscopy Analysis of Asphalt Concrete with Iron Tailings
-
摘要:
这是一篇陶瓷及复合材料领域的论文。本文分析了不同铁尾矿掺量的沥青混合料的性能,并对沥青混合料的抵抗车辙性能、水稳定性、抗裂性能进行分析,进而验证铁尾矿应用于低等级道路中面层的可行性。结果表明:弯拉强度在在掺量从20%到40%时下降幅度较大;浸水残留稳定度在掺量为20%后增长幅度开始下降。随着铁尾矿掺量不断增大,铁尾矿沥青混凝土FT-IR图谱在局部出现了较小的、新的吸收峰且对原有吸收峰也出现了增强,这说明了掺入铁尾矿后,沥青混凝土与其发生了化学反应,且改变了原有沥青内部结构,进而会产生新的官能团。随着铁尾矿掺量不断增大,铁尾矿沥青混凝土沥青环烷烃和烷烃C-H官能团面积占比却呈现出先增大后减小的趋势,且铁尾矿掺量为20%时,沥青环烷烃和烷烃C-H官能团面积占比达到较大。
Abstract:This is an article in the field of ceramics and composites. The performance of asphalt mixtures with different iron tailings content was analyzed. The rutting resistance, water stability and crack resistance of the asphalt mixture were analyzed. This verified the feasibility of iron tailings applied to the middle surface of low-grade roads. The results showed that the flexural strength decreased the most when the dosage was from 20% to 40%. The increase rate of immersion residue stability began to decrease after the dosage was 20%. As the content of iron tailings continued to increase, the FT-IR spectrum of iron tailings asphalt concrete showed a small, new absorption peak locally and an enhancement to the original absorption peak. This showed that after the addition of iron tailings, the asphalt concrete chemically reacted with it, and the internal structure of the original asphalt was changed and new functional groups were generated. With the increasing content of iron tailings, the proportion of the area of cycloalkane and alkane C-H functional groups in the asphalt concrete of iron tailings asphalt concrete showed a trend of first increasing and then decreasing. And when the iron tailings content was 20%, the area ratio of asphalt naphthenic and alkane C-H functional groups reached the maximum.
-
Key words:
- Ceramics and composites /
- Iron tailings /
- Rutting resistance /
- Water stability /
- Crack resistance /
- Absorption peak
-
-
表 1 90#国标沥青的技术指标
Table 1. Technical indicators of 90# national standard asphalt
检测指标 规范
要求实验
结果针入度(25 ℃,100 g,5 s)/(0.1 mm) 60~80 68.0 延度(5 cm/min,5 ℃)/cm ≥30 38.0 软化点/℃ ≥55 74.5 180 ℃/135 ℃粘度/(Pa/s) ≤3.0 1.55 TFOT 后残留物
( 163 ℃,5 h)质量变化/% ≤±1.0 -0.15 针入度比/% ≥60 74.2 延度( 5 ℃) /% ≥20 26.2 -
[1] 姚爱玲, 王军伟, 许敏, 等. 水泥稳定碎石基层沥青路面隆起开裂数值分析[J]. 重庆交通大学学报(自然科学版), 2021, 40(6):105-111.YAO A L, WANG J W, XU M, et al. Numerical analysis of asphalt pavement rumble cracking on cement stabilized aggregates base[J]. Journal of Chongqing Jiaotong University (Natural Science Edition), 2021, 40(6):105-111.
YAO A L, WANG J W, XU M, et al. Numerical analysis of asphalt pavement rumble cracking on cement stabilized aggregates base[J]. Journal of Chongqing Jiaotong University (Natural Science Edition), 2021, 40(6):105-111.
[2] 刘竞怡, 孙志华, 温久然, 等. 金尾矿砂作为混凝土集料的物化性质及其改性试验[J]. 金属矿山, 2021(5):211-220.LIU J Y, SUN Z H, WEN J R, et al. Physicochemical properties of gold tailing sand as concrete aggregate and its modification test[J]. Metal Mining, 2021(5):211-220.
LIU J Y, SUN Z H, WEN J R, et al. Physicochemical properties of gold tailing sand as concrete aggregate and its modification test[J]. Metal Mining, 2021(5):211-220.
[3] 程和平, 陆璐. 改良铁尾矿砂混凝土的力学和耐腐蚀性能研究[J]. 矿产综合利用, 2021(6):47-52.CHENG H P, LU L. Research on mechanical properties and corrosion resistance of improved iron tailings concrete[J]. Multipurpose Utilization of Mineral Resources, 2021(6):47-52. doi: 10.3969/j.issn.1000-6532.2021.06.009
CHENG H P, LU L. Research on mechanical properties and corrosion resistance of improved iron tailings concrete[J]. Multipurpose Utilization of Mineral Resources, 2021(6):47-52. doi: 10.3969/j.issn.1000-6532.2021.06.009
[4] 陈振富, 蔡双阳, 陶秋旺, 等. 铅锌尾矿砂混凝土抗压强度及屏蔽性能试验研究[J]. 混凝土, 2021(2):68-71+76.CHEN Z F, CAI S Y, TAO Q W, et al. Experimental study on compressive strength and shielding performance of lead-zinc tailing sand concrete[J]. Concrete, 2021(2):68-71+76. doi: 10.3969/j.issn.1002-3550.2021.02.017
CHEN Z F, CAI S Y, TAO Q W, et al. Experimental study on compressive strength and shielding performance of lead-zinc tailing sand concrete[J]. Concrete, 2021(2):68-71+76. doi: 10.3969/j.issn.1002-3550.2021.02.017
[5] 赵连平, 郝绍菊, 马竞. 铁尾矿沥青混合料基本性能及老化耐久性研究[J]. 矿产综合利用, 2022(4):111-118.ZHAO L P, HAO S J, MA J. New technology for efficient resource utilization of red mud from bayer process[J]. Multipurpose Utilization of Mineral Resources, 2022(4):111-118.
ZHAO L P, HAO S J, MA J. New technology for efficient resource utilization of red mud from bayer process[J]. Multipurpose Utilization of Mineral Resources, 2022(4):111-118.
[6] 胡超, 包惠明, 迟恩涛, 等. 高岭土尾矿沥青混合料抗腐性能试验与机理研究[J]. 矿产综合利用, 2020(5):161-168.HU C, BAO H M, CHI E T, et al. Test and mechanism study on corrosion resistance of kaolin tailings asphalt mixture[J]. Multipurpose Utilization of Mineral Resources, 2020(5):161-168. doi: 10.3969/j.issn.1000-6532.2020.05.026
HU C, BAO H M, CHI E T, et al. Test and mechanism study on corrosion resistance of kaolin tailings asphalt mixture[J]. Multipurpose Utilization of Mineral Resources, 2020(5):161-168. doi: 10.3969/j.issn.1000-6532.2020.05.026
[7] 张铁志, 吴进. 铁尾矿砂在沥青混合料中的路用性能研究[J]. 公路, 2015, 60(6):207-210.ZHANG T Z, WU J. Research on road performance of iron tailing sand in asphalt mixture[J]. Highway, 2015, 60(6):207-210.
ZHANG T Z, WU J. Research on road performance of iron tailing sand in asphalt mixture[J]. Highway, 2015, 60(6):207-210.
[8] 李军, 徐林荣, 刘小明. 石棉尾矿用作沥青混合料集料特性研究[J]. 铁道科学与工程学报, 2011, 8(5):31-34.LI J, XU L R, LIU X M. Characterization of asbestos tailings as aggregate for asphalt mixtures[J]. Journal of Railway Science and Engineering, 2011, 8(5):31-34. doi: 10.3969/j.issn.1672-7029.2011.05.006
LI J, XU L R, LIU X M. Characterization of asbestos tailings as aggregate for asphalt mixtures[J]. Journal of Railway Science and Engineering, 2011, 8(5):31-34. doi: 10.3969/j.issn.1672-7029.2011.05.006
[9] 廖湘南. 基于再生粗骨料性能的沥青混凝土设计方法与路用性能研究[D]. 广州: 华南理工大学, 2016.LIAO X N. Research on design method and road performance of asphalt concrete based on recycled coarse aggregate properties [D]. Guangzhou: South China University of Technology, 2016.
LIAO X N. Research on design method and road performance of asphalt concrete based on recycled coarse aggregate properties [D]. Guangzhou: South China University of Technology, 2016.
[10] 王修山, 周恒宇, 沈森杰, 等. 纤维增强聚合物改性沥青混合料路用性能研究[J]. 公路, 2021, 66(6):54-59.WANG X S, ZHOU H Y, SHEN S J, et al. Research on road performance of fiber-reinforced polymer-modified asphalt mixtures[J]. Highway, 2021, 66(6):54-59.
WANG X S, ZHOU H Y, SHEN S J, et al. Research on road performance of fiber-reinforced polymer-modified asphalt mixtures[J]. Highway, 2021, 66(6):54-59.
[11] 杨志全, 杨文才, 张宗国, 等. 锡尾矿用作二级及以下公路路面底基层材料的试验与效果指标预测模型研究[J]. 硅酸盐通报, 2019, 38(8):2578-2585.YANG Z Q, YANG W C, ZHANG Z G, et al. Experimental and effect index prediction modeling study of tin tailings used as sub-base material for pavements on secondary and lower roads[J]. Silicate Bulletin, 2019, 38(8):2578-2585.
YANG Z Q, YANG W C, ZHANG Z G, et al. Experimental and effect index prediction modeling study of tin tailings used as sub-base material for pavements on secondary and lower roads[J]. Silicate Bulletin, 2019, 38(8):2578-2585.
[12] 程俊霞, 朱亚明, 高丽娟, 等. H-NMR、FT-IR解析煤系针状焦原料的沥青分子结构[J]. 炭素技术, 2019, 38(1):24-27+58.CHENG J X, ZHU Y M, GAO L J, et al. H-NMR and FT-IR analysis of asphaltene molecular structure of coal-based needle coke feedstock[J]. Carbon Technology, 2019, 38(1):24-27+58.
CHENG J X, ZHU Y M, GAO L J, et al. H-NMR and FT-IR analysis of asphaltene molecular structure of coal-based needle coke feedstock[J]. Carbon Technology, 2019, 38(1):24-27+58.
-