Metallogenic characteristics and model of sandstone−type uranium deposits in Straz area, Bohemia Basin, Czech Republic
-
摘要:
研究目的 捷克波西米亚盆地斯特拉地区是著名的铀成矿区,区内砂岩型铀矿床的成矿作用复杂,厘定其成矿特征和成矿模式对于完善砂岩型铀矿成矿理论研究、对中国同类型矿床找矿勘查具有重要借鉴意义。
研究方法 本文在总结前人对斯特拉地区砂岩铀矿床地质特征和成矿条件的基础上,对其铀源、成矿阶段以及矿床成因进行综合研究并对中国松辽盆地同类砂岩型铀矿进行了对比研究。
研究结果 斯特拉矿床根据其矿物组合特征可划分为6个成矿阶段,分别是炭质–伊利石阶段、赤铁矿–高岭土阶段、铀富集阶段、多金属成矿阶段、褐铁矿化阶段以及赤铁矿–石英阶段。通过研究认为,出露于盆地东北部的元古代和古生代的黑云母花岗闪长岩和斑状黑云母花岗岩较低的Th/U值表明,这两类岩石中部分铀以活性铀形式存在,是成矿潜在的铀源。斯特拉矿床是以白垩系富铀沉积层位为基础,在其上叠加了早阿尔卑斯期岩浆热液作用,后因地壳缓慢上升,导致铀重新活化,进一步在盆地内层间氧化带局部叠加铀成矿作用,形成板状、脉状、卷状3种铀矿体共存的砂岩型铀矿床。
结论 本文提出了成矿模式:斯特拉地区砂岩型铀矿床属于多铀源—以盆地基底原始铀源为主、多阶段大地构造控矿—以早阿尔卑斯期(~70 Ma)造山运动为主、多成因复合成矿—以早阿尔卑斯期岩浆热液叠加成矿为主的“三多三主”复合成因砂岩型铀矿床。
Abstract:This paper is the result of mineral exploration engineering.
Objective Straz area (Bohemia Basin, Czech Republic) is a well–known uranium metallogenic area. The mineralization of sandstone–type uranium deposits is complex. Determining its metallogenic characteristics and metallogenic model is of great significance to perfect the metallogenic theory of sandstone–type uranium deposits and know the prospecting and exploration of the similar uranium deposits in China.
Methods On the basis of summarizing the geological characteristics and metallogenic conditions of sandstone–type uranium deposits in the Straz area, this study focus on the uranium source, metallogenic stage and genesis of the deposits, and comparative studies are conducted by the similar sandstone–type uranium deposits in Songliao Basin.
Results The Straz deposit can be divided into six metallogenic stages according to its mineral assemblage characteristics, i.e., carbon-hydromica, hematite–kaolinite, uranium, polymetallic, limonite and hematite–quartz stage. Proterozoic and Paleozoic igneous, metasedimentary, and sedimentary rocks outcropping to the northeast of the Bohemia Basin are considered potential sources for uranium. The Lusatian Massif contains biotite granodiorite and porphyritic biotite granite with. The low Th/U ratios suggest that part of the uranium is probably present in leachable form and these rocks constitute viable uranium sources.
Conclusions The metallogenic model of the Straz area belongs to the “three factors and three majors”: Multi uranium source−basin basement primary uranium source, multi stage tectonic ore controlling–early Alps (about 70 Ma) orogenic movement, multi genetic composite mineralization– early Alps magmatic hydrothermal superimposed mineralization.
-
-
图 1 波西米亚盆地北部地质图(据Novak, 2001; Ekert and Muzak, 2010; Dahlkamp, 2016)
Figure 1.
图 2 斯特拉地区西北–东南剖面示意图(据Dahlkamp, 2016)
Figure 2.
图 3 斯特拉地区砂岩型铀矿床岩性地层柱状图(据Dahlkamp, 2016; Troger, 2017)
Figure 3.
图 4 斯特拉地区区森诺曼期地层中蚀变与铀矿化关系剖面示意图(据Dahlkamp, 2016)
Figure 4.
图 5 斯特拉地区森诺曼期沉积物中后生和成岩矿物共生模式(据Dahlkamp, 2016)
Figure 5.
图 7 波西米亚盆地哈姆尔矿床与松辽盆地钱家店矿床在全球的位置(王飞飞等, 2017)
Figure 7.
表 1 斯特拉地区主要铀矿床(据Dahlkamp, 2016)
Table 1. Main uranium deposits in Straz area (after Dahlkamp, 2016)
矿床 含矿地层 含矿岩性 铀品位/% 铀产量/t 开采方法 北哈姆尔 白垩系森诺曼阶 砂岩、粉砂岩 0.11 22000 UG 南哈姆尔 白垩系森诺曼阶 砂岩、粉砂岩 0.08~0.15 18400 UG 斯特拉 白垩系森诺曼阶 砂岩、粉砂岩 0.15~0.2 17525 ISL 克里赞尼 白垩系森诺曼阶 砂岩、粉砂岩 0.09 5800 UG 欧赛克纳柯特尔 白垩系森诺曼阶 砂岩、粉砂岩 0.1~0.15 14400 UG 注:UG—地下开采;ISL—地浸开采。 表 2 斯特拉地区砂岩型铀矿床矿物组合特征(据Dahlkamp, 2016)
Table 2. Mineral assemblage characteristics of sandstone-type uranium deposits, Straz area (after Dahlkamp, 2016)
沉积成岩阶段碎屑矿物 自生矿物 非矿 矿石+伴生 铀矿物 不含铀矿物 重晶石 石英 独居石 钙铀云母 磷灰石 萤石 方硫铁镍矿 白钛石 黑云母 磷灰石 金红石 黑色铀氧化物 重晶石 石膏 水磷钙钍石 褐铁矿 绿泥石 板钛矿 十字石 铀石 板钛矿 水黑云母 黄铜矿 磁铁矿 长石 锡石 榍石 人形石 碳酸盐 伊利石 方铅矿 白铁矿 海绿石 石榴子石 钛磁铁矿 沥青铀矿 玉髓 伊利石 针铁矿 白云母 白云母 金矿石 黄玉 氟磷铀矿 绿泥石 高龄石 赤铁矿 辉钼矿 蛋白石 褐铁矿 电气石 水铀钒族 蒙脱石 含水针铁矿 黄铁矿 植物碎片 蓝晶石 钛铀矿 钛板钛矿 水赤铁矿 闪锌矿 石英 白钛石 磷钇矿 石英 磁铁矿 锆石、水锆石 绢云母 表 3 波西米亚盆地和松辽盆地砂岩型铀矿床对比研究
Table 3. Comparative study on sandstone-type uranium deposits in Bohemia Basin and Songliao Basin
地质要素 波西米亚盆地 松辽盆地 区域地
质背景大地构造位置 捷克波西米亚盆地北部斯特拉地区 中国东北松辽盆地钱家店凹陷 基底特征 新元古界—下古生界千枚岩、海西期花岗岩等 下构造层:前寒武纪中深变质岩系和片麻花岗岩
上构造层:晚古生代浅变质岩系和各时期花岗岩古构造背景 强烈挤压 弱伸展、弱挤压构造 矿床地质 沉积相 陆相−滨海相−浅海相 辫状河 主要构造 NW–SE和NE–SW构造 NNE向、NW断裂构造 主要地层 上白垩统森诺曼阶、土伦阶 上白垩统青山口组、姚家组、嫩江组 赋矿层位 上白垩统森诺曼阶 上白垩统姚家组 砂岩类型 灰色脆性砂岩、泥质粉砂岩等 灰色长石岩屑砂岩 矿体地质 铀存在形式 以独立铀矿物为主 吸附铀为主 矿物组合 矿石矿物成分相当复杂(表2),多达130余种矿物,有些矿物为世界上首次发现,一些矿物稀土含量高,伴有稀土元素矿化 微晶石英−方解石−沥青铀矿组合 矿体形态 板状、卷状 板状 矿化规模 超大型 大型 铀矿化年龄 37 Ma, (25Ma±3)Ma, (6±3)Ma 以中新世为主, 多小于20 Ma 围岩蚀变 赤铁矿−伊利石化、炭质−伊利石化、高岭石化、硅化 高岭石化、赤铁矿化、碳酸盐化、黄铁矿化、重晶石化、后生氧化铁化 控矿因素 构造 NW−SE向的拉贝断裂和NE−SW向的厄尔士断裂 受构造天窗控制,还与NNE向、NW向断裂构造及辉绿岩脉密切相关 岩性−岩相 浅海相砂岩、滨海相泥质粉砂岩、陆相粉砂岩 三角洲、滨浅湖相粉砂岩、泥岩、杂,砾岩 古气候 干旱 整体干旱—半干旱夹局部潮湿 水文地质 土伦阶潜水与森诺曼阶承压水 完整的补−径−流体系 油气还原条件 不发育 发育 铀源 沉积预富集铀源、元古代和古生代花岗岩等 加里东、海西期酸性火山岩、燕山期花岗岩为主 成矿演化 矿床成因 沉积+热液改造+层间氧化带渗入改造复成因型 渗入水层间氧化和油田水上升还原混合成矿 典型矿床 哈姆尔矿床 钱家店矿床 数据来源:陈戴生等, 2003, 2011; 刘志飞和胡修棉, 2003; 夏毓亮等, 2003; 张金带等, 2005, 2010; 陈祖伊等, 2010; 金若时和覃志安, 2013; 闫枫, 2018; 程银行等, 2020。 -
[1] Cai C F, Dong H L, Li H T, Xiao X J, Ou G X, Zhang C M. 2007. Mineralogical and geochemical evidence for coupled bacterial uranium mineralization and hydrocarbon oxidation in the Shashagetai deposit, NW China[J]. Chemical Geology, 236(1/2): 167−179.
[2] Chen Daisheng, Li Shengxiang, Cai Yuqi. 2003. A discussion on research situation and development direction of sandstone–type uranium deposits in the Meso–Cenozoic basin of China[J]. Acta Sedimemtologica Sinica, 21(1): 113−117 (in Chinese with English abstract).
[3] Chen Daisheng, Liu Wusheng, Jia Licheng. 2011. Paleo–climate evolution in China and its control on the metallization of sandstone type uranium deposit of Meso–Cenozoic basins[J]. Uranium Geology, 27(6): 113−117 (in Chinese with English abstract).
[4] Chen Zuyi, Chen Daisheng, Gu Kangheng, Wang Yajing. 2010. The regional distribution regularities of ore–hosting horizon, deposit type and mineralization age of China’s sandstone–hosted uranium deposits[J]. Uranium Geology, 26(6): 321−327 (in Chinese with English abstract).
[5] Cheng Y H, Wang S Y, Jin R S, Li J G, Ao C, Teng X M. 2019. Global Miocene tectonics and regional sandstone–style uranium mineralization[J]. Ore Geology Reviews, 106: 238−250. doi: 10.1016/j.oregeorev.2019.02.003
[6] Cheng Yinhang, Zhang Tianfu, Zeng Wei, Hu Peng, Liu Xing, Yang Jun, Qu Kai, Wang Shaoyi, Cheng Xianyu, Ao Cong, Jin Ruoshi, Miao Peisen. 2020. Driving forces for sandstone–type uranium super–enrichment in Meso–Cenozoic basin, North Chaina[J]. Geotectonica et Metallogenia, 44(4): 590−606 (in Chinese with English abstract).
[7] Curiale J A, Bloch S, Rafalska−Bloch J, Harrison W E. 1983. Petroleum–related origin for uriniferous organic–rich nodules of southwestern Oklahoma[J]. AAPG Bulletin, 67(4): 588−608.
[8] Dahlkamp F J. 2016. Uranium Deposits of the World[M]. Berlin: Springer Berlin Heidelberg, 129–143.
[9] Ekert V, Muzak J. 2010. Mining and remediation at the Straz pod Ralskem Uranium deposit[J]. Geoscience Engineering, (3): 1−6.
[10] Fan Aiping, Liu Yiqun, Yang Renchao, Feng Qiao, Zhang Fuxin, Han Zuozhen. 2007. Study on diagenesis of sandstone type uranium deposits in Dongsheng area of Ordos Basin[J]. Science in China: Earth Science, 37(S1): 166−172 (in Chinese).
[11] Fu Yong, Wei Shuaichao, Jin Ruoshi, Li Jianguo, Ao Cong. 2016. Current status and existing problems of China’s sandstone–type uranium deposits[J]. Acta Geologica Sinica, 90(12): 3519−3544 (in Chinese with English abstract).
[12] Ingham E S, Cook N J, Cliff J, Ciobanu C L, Huddleston A. 2014. A combined chemical, isotopic and microstructural study of pyrite from roll–front uranium deposits, Lake Eyre Basin, South Australia[J]. Geochimica et Cosmochimica Acta, 125: 440−465. doi: 10.1016/j.gca.2013.10.017
[13] Jin R S, Miao P S, Sima X Z, Li J G, Zhao H L, Zhao F Q, Fen X X, Chen Y, Chen L L, Zhao L J, Zhu Q. 2016. Structure styles of Mesozoic–Cenozoic U–bearing rock series in Northern China[J]. Acta Geologica Sinica (English Edition), 90(6): 2104−2116. doi: 10.1111/1755-6724.13025
[14] Jin Ruoshi, Qin Zhi’an. 2013. Study on the exploration sequence of sandstone–hosted uranium deposits in North China[J]. Geological Survey and Research, 36(2): 81−84 (in Chinese with English abstract).
[15] Lehmann B. 2008. Uranium ore deposits[J]. Economic Geology, 2: 16−26.
[16] Li Tiangang. 1995. Uranium deposit in the Bohemian block (I)[J]. Overseas Uranium and Gold Geology, 12(4): 289−291 (in Chinese).
[17] Li Tiangang. 1997. Uranium deposit in the Bohemian block (III)[J]. Overseas Uranium and Gold Geology, (1): 1−7 (in Chinese).
[18] Lin Shuangxing, Gong Xiaofeng, Zhang Tieling. 2017. Deep geofluid and uranium metallogenies in Meso–Cenozoic basin[J]. Uranium Geology, 33(6): 321−328 (in Chinese with English abstract).
[19] Liu Xiang. 1996. Characteristics of the superlarge polygenetic compound uranium deposits in the Bohemian Massif and geotectonic background of the mineralization[J]. Geotectonica et Metallogenia, (4): 298−309 (in Chinese).
[20] Liu Zhifei, Hu Xiumian. 2003. Extreme climates events in the Cretaceous and Paleogene[J]. Advance in Earth Sciences, 18(5): 681−690 (in Chinese with English abstract).
[21] Luo Yi, He Zhongbo, Ma Hanfen, Sun Xiang. 2012. Metallogenic characteristics of Qianjiadian sandstone uranium deposit in Songliao Basin[J]. Mineral Deposits, 31(2): 391−400 (in Chinese with English abstract).
[22] Luo Yi, Ma Hanfeng, Xia Yuliang, Zhang Zegui. 2007. Geologic characteristics and metallogenic model of Qianjiadian uranium deposit in Songliao Basin[J]. Uranium Geology, 23(4): 193−200 (in Chinese with English abstract).
[23] Novak J. 2001. Groundwater remediation in Straz Leaching operation[J]. Mine Water and the Environment, (20): 158−167.
[24] Scharm B. 1991. Mineralogy of sandstone–type uranium district of northern Bohemia (Czechoslovakia)[C]// Primary Radioactive Paragenetic (The Textural Patterns of Radioactive Mineral Paragenetic Associations), 289–315.
[25] Shan Zhibo, Lei Angui, Song Bairong, Ao Cong, Yang Songlin, Han Hongdou. 2022. Features of clay minerals in the Upper Cretaceous Yaojia Formation sandstones of the Qianjiadian Area in the Songliao Basin and its relation to uranium mineralization[J]. Geology in China, 49(1): 271−283 (in Chinese with English abstract).
[26] Song H, Ni S J, Chi G X, Zhang C J, Hou M C, Liu H X, Wang G, Yan W Q. 2019. Systematic variations of H–O–C isotopes in different alteration zones of sandstone–hosted uranium deposits in the southern margin of the Yili Basin (Xinjiang, China): A review and implications for the ore−forming mechanisms[J]. Ore Geology Reviews, 107: 615−628. doi: 10.1016/j.oregeorev.2019.03.004
[27] Song Hao, Ni Shijun, Hou Mingcai, Zhang Chengjiang, Shi Zhiqiang, Wang Guo, Yang Bin, Hu Yuan, Chen Yuejiao. 2016. The characteristic of clay minerals in sandstone–type uranium deposit in the Yili Basin, NW China and its relationship with uranium mineralization[J]. Acta Geologica Sinica, 90(12): 3352−3366 (in Chinese with English abstract).
[28] Troger K. 2017. Facies changes in the Cenomanian (Cretaceous) of the northwestern Elbe Valley near Dresden (Saxony, Germany)[J]. Acta Geologica Polonica, 61(1): 135−144.
[29] Wang Fan. 2018. Analysis of Metallogenic Conditions of Sandstone−type Uranium Deposits in Northwest Area of Songliao Basin[D]. Nanchang: East China University of Technology, 1–99 (in Chinese with English abstract).
[30] Wang Feifei, Liu Chiyang, Qiu Xinwei, Guo Pei, Zhang Shaohua, Cheng Xianghu. 2017. Characteristics and distribution of worlds identified sandstone–type uranium resources[J]. Acta Geologica Sinica, 91(9): 2021−2046 (in Chinese with English abstract).
[31] Wedepohl K H. 1995. Composition of the continental crust[J]. Geochimica et Cosmochimica Acta, 59(7): 1217−1232. doi: 10.1016/0016-7037(95)00038-2
[32] Xia Yu. 2017. The Simulation Research of Interlayered Oxidized Zone Sand Type Uranium Deposit's Mineralization Geological Condition[D]. Chengdu: Chengdu University of Technology, 1–67 (in Chinese with English abstract).
[33] Xia Yuliang, Lin Jinrong, Liu Hanbin, Fan Guang, Hou Yanxian. 2013. Research on geochronology of sandstone−hosted uranium formation in major uranium productive basins, northern China[J]. Uranium Geology, (3): 126−136 (in Chinese with English abstract).
[34] Xue C J, Chi G X, Xue W. 2010. Interaction of two fluid systems in the formation of sandstone–hosted uranium deposits in the Ordos Basin: Geochemical evidence and hydrodynamic modeling[J]. Journal of Geochemical Exploration, 106: 226−235. doi: 10.1016/j.gexplo.2009.11.006
[35] Yan Feng. 2018. Petrology and Geochemistry of the Qianjiadian Sanstone–type Uranium Deposit in the Southwest of Songliao Basin[D]. Xi’an: Northwest University, 1–84 (in Chinese with English abstract).
[36] Zammit C M, Brugger J, Southam G, Reith F. 2014. In situ recover of uranium–the microbial influence[J]. Hydrometallurgy, 150: 236−244. doi: 10.1016/j.hydromet.2014.06.003
[37] Zhang Jindai. 2016. Innovation and development of metallogenic theory for sandstone type uranium deposit in China[J]. Uranium Geology, 32(6): 321−332 (in Chinese with English abstract).
[38] Zhang Jindai, Xu Gaozhong, Chen Anping, Wang Cheng. 2005. Preliminary discussion on uranium metallogenic models of China's in situ leachable sandstone type uranium deposits[J]. Uranium Geology, 21(3): 139−145 (in Chinese with English abstract).
[39] Zhang Jindai, Xu Gaozhong, Lin Jinrong, Peng Yunbiao, Wang Guo. 2010. The implication of six kinds of new sandstone–type uranium deposits to uranium resources potential in North China[J]. Geology in China, 37(5): 1434−1449 (in Chinese with English abstract).
[40] Zhang L, Liu C Y, Fayek M, Wu B L, Lei K Y, Cun X N, Sun L. 2017. Hydrothermal mineralization in the sandstone–hosted Hangjinqi uranium deposit, North Ordos Basin, China[J]. Ore Geology Reviews, 80: 103−115. doi: 10.1016/j.oregeorev.2016.06.012
[41] Zhao Fengmin. 1991. Geological survey of uranium deposit in Czech block[J]. Overseas Uranium and Gold Geology, (3): 1−9.
[42] 陈戴生, 李胜祥, 蔡煜琦. 2003. 我国中新生代盆地砂岩型铀矿研究现状及发展方向的探讨[J]. 沉积学报, 21(1): 113−117.
[43] 陈戴生, 刘武生, 贾立城. 2011. 我国中新生代古气候演化及其对盆地砂岩型铀矿的控制作用[J]. 铀矿地质, 27(6): 321−327.
[44] 陈祖伊, 陈戴生, 古抗衡, 王亚婧. 2010. 中国砂岩型铀矿容矿层位、矿化类型和矿化年龄的区域分布规律[J]. 铀矿地质, 26(6): 321−330.
[45] 程银行, 张天福, 曾威, 胡鹏, 刘行, 杨君, 曲凯, 王少轶, 程先钰, 奥琮, 金若时, 苗培森. 2020. 中国北方中新生代盆地砂岩型铀超常富集的驱动力[J]. 大地构造与成矿学, 44(4): 590−606.
[46] 樊爱萍, 柳益群, 杨仁超, 冯乔, 张复新, 韩作振. 2007. 鄂尔多斯盆地东胜地区砂岩型铀成矿成岩作用研究[J]. 中国科学(D辑: 地球科学), 37(S1): 166−172.
[47] 付勇, 魏帅超, 金若时, 李建国, 奥琮. 2016. 我国砂岩型铀矿分带特征研究现状及存在问题[J]. 地质学报, 90(12): 3519−3544.
[48] 金若时, 覃志安. 2013. 中国北方含煤盆地砂岩型铀矿找矿模式层序研究[J]. 地质调查与评价, 36(2): 81−84.
[49] 李田港. 1995. 波希米亚地块铀矿床(一)[J]. 国外铀金地质, 12(4): 289−291.
[50] 李田港. 1997. 波希米亚地块铀矿(三)[J]. 国外铀金地质, (1): 1−7.
[51] 林双幸, 宫晓峰, 张铁岭. 2017. 中新生代盆地深部地质流体及成矿作用[J]. 铀矿地质, 33(6): 321−328.
[52] 刘翔. 1996. “波西米亚地块”超大型多因复成铀矿床特征及其成矿大地构造背景[J]. 大地构造与成矿学, (4): 298−309.
[53] 刘志飞, 胡修棉. 2003. 白垩纪至早第三纪的极端气候事件[J]. 地球科学进展, 18(5): 681−690.
[54] 罗毅, 何中波, 马汉峰, 孙祥. 2012. 松辽盆地钱家店砂岩型铀矿床成矿地质特征[J]. 矿床地质, 31(2): 391−400.
[55] 罗毅, 马汉峰, 夏毓亮, 张泽贵. 2007. 松辽盆地钱家店铀矿床成矿作用特征及成矿模式[J]. 铀矿地质, 23(4): 193−200.
[56] 单芝波, 雷安贵, 宋柏荣, 奥琮, 杨松林, 韩洪斗. 2022. 松辽盆地钱家店地区姚家组砂岩黏土矿物特征及其与铀矿化的关系[J]. 中国地质, 49(1): 271−283.
[57] 宋昊, 倪师军, 候明才, 张成江, 时志强, 王果, 杨斌, 胡媛, 陈月娇. 2016. 新疆伊犁盆地砂岩型铀矿床层间氧化带中粘土矿物特征及与铀矿化关系研究[J]. 地质学报, 90(12): 804−819.
[58] 王帆. 2018. 松辽盆地西北地区砂岩型铀矿成矿条件分析[D]. 南昌: 东华理工大学, 1–99.
[59] 王飞飞, 刘池洋, 邱欣卫, 郭佩, 张少华, 程相虎. 2017. 世界砂岩型铀矿探明资源的分布及特征[J]. 地质学报, 91(9): 2021−2046.
[60] 夏彧. 2017. 层间氧化带砂岩型铀矿成矿条件的模拟研究[D]. 成都: 成都理工大学, 1–67.
[61] 夏毓亮, 林锦荣, 刘汉彬, 范光, 侯艳先. 2003. 中国北方主要产铀盆地砂岩型铀矿成矿年代学研究[J]. 铀矿地质, (3): 126−136.
[62] 闫枫. 2018. 松辽盆地西南部钱家店砂岩型铀矿床岩石学和矿床地球化学研究[D]. 西安: 西北大学, 1–84.
[63] 张金带. 2016. 我国砂岩型铀矿成矿理论的创新和发展[J]. 铀矿地质, 32(6): 321−332.
[64] 张金带, 徐高中, 陈安平, 王成. 2005. 我国可地浸砂岩型铀矿成矿模式初步探讨[J]. 铀矿地质, 21(3): 139−145.
[65] 张金带, 徐高中, 林锦荣, 彭云彪, 王果. 2010. 中国北方6种新的砂岩型铀矿对铀资源潜力的提示[J]. 中国地质, 37(5): 1434−1449.
[66] 赵凤民. 1991. 捷克地块铀矿地质概况[J]. 国外铀金地质, (3): 1−9.
-