-
摘要:
为了解决化工行业聚氯化铝渣的堆存及资源浪费问题,论文以聚氯化铝渣为原料,在高温下制备聚氯化铝渣烧结砖,研究不同成型条件和烧结条件对该砖的影响,并利用X射线衍射(XRD)和扫描电镜(SEM)表征聚氯化铝渣烧结砖在烧结过程中的物相组成,分析其演变过程。结果表明, 聚氯化铝渣烧结砖的较优成型压力为27.5 MPa、成型水分为17.5%、升温方式为直接烧结、升温速率为8 ℃/min及烧结温度为1 100 ℃;该条件下烧结砖的抗压强度为33.5 MPa、吸水率为18.63%、体积密度为1.73 g/cm、线收缩率为6.6%,满足国家标准《烧结普通砖》(GB/T 5101—2017)中MU30等级要求;聚氯化铝渣烧结砖1 100 ℃时的主要物相是石英和硅酸铝,石英和其他助熔物形成液相填充到孔隙中,使结构更加致密。上述结果为聚氯化铝渣制备成烧结砖提供借鉴意义。
Abstract:In order to solve the problem of stockpiling and resource waste of polyaluminum chloride slags in the chemical industry, this paper uses polyaluminum chloride slags as raw materials to prepare sintered bricks with polyaluminum chloride slags at high temperature, studies the influence of different molding conditions and sintering conditions on sintered bricks with polyaluminum chloride slags, and uses X-ray diffraction (XRD) and scanning electron microscopy (SEM) to characterize the phase composition of sintered bricks with polyaluminum chloride slags in the sintering process, and analyzes its evolution process. The results show that the optimum molding pressure, molding moisture, heating mode, heating rate and sintering temperature are 27.5 MPa, 17.5%, direct sintering, 8 ℃/min and 1 100 ℃ respectively. At this condition, the compressive strength of sintered brick is 33.5 MPa, the water absorption rate is 18.63%, the bulk density is 1.73 g/cm3, and the linear shrinkage rate is 6.6%, meeting the requirements of MU30 grade in the national standard 《Fired common bricks》(GB/T 5101—2017). The research shows that the main phase of the sintered brick is quartz, quartz and other fluxes form liquid phase to fill the pores, which makes the structure more compact. The above results can be used for references in preparing sintered bricks from polyaluminum chloride slags.
-
-
表 1 聚氯化铝渣的化学成分/%
Table 1. Chemical composition of polyaluminum chloride slags
名称 SiO2 Al2O3 CaO MgO K2O Fe2O3 Na2O Cl- TiO2 其他 聚氯化铝渣 51.10 27.93 3.78 3.56 0.61 3.66 0.17 2.59 5.74 0.86 推荐值[7] 35~80 8~30 0.5~18 0~5 0.14~4.5 2~10 0.1~1.5 - - - 表 2 聚氯化铝渣的特征粒径
Table 2. Characteristic particle size of polyaluminum chloride slags
特征粒径/μm 不均匀系数 d10 d50 d60 d97 Cu 1.52 29.69 44.62 195.73 12 表 3 升温方式对烧结砖性能的影响
Table 3. Effect of heating mode on properties of sintered bricks
升温方式 抗压强度/
MPa体积密度/
(g/cm3)收缩率/
%吸水率/
%400 ℃保温2 h 18.72 1.62 4.26 21.90 不保温 21.20 1.61 4.70 22.49 500 ℃保温2 h 20.57 1.60 4.86 23.20 表 4 升温速率对烧结砖性能的影响
Table 4. Effect of heat in grate on properties of sintered bricks
升温速率/
(℃/min)抗压强度/
MPa体积密度/
(g/cm3)线收缩率/
%吸水率/
%4 21.20 1.61 4.70 22.49 6 22.40 1.59 5.00 23.10 8 24.50 1.60 5.06 23.23 10 23.70 1.62 5.19 22.85 表 5 聚氯化铝渣烧结砖与标准烧结砖对比情况
Table 5. Comparison of sintered bricks made of polyaluminum chloride slags and standard sintered bricks
-
[1] 李晴淘,张淳之,周吉峙,等. 改性聚铝废渣对污泥脱水性能的影响[J]. 工业水处理, 2019, 39(12):79-81.LI Q T,ZHANG C Z,ZHOU J Z,et al. Improvement of sludge dewatering capability with modified polyaluminium chloride residue[J]. Industrial Water Treatment, 2019, 39(12):79-81. doi: 10.11894/iwt.2018-0999
LI Q T,ZHANG C Z,ZHOU J Z,et al. Improvement of sludge dewatering capability with modified polyaluminium chloride residue[J]. Industrial Water Treatment, 2019, 39(12):79-81. doi: 10.11894/iwt.2018-0999
[2] 孙英娟,周旋,岳丽娜,等. 工业固废制备聚合氯化铝铁及其在煤泥废水处理中的应用[J]. 矿产综合利用, 2021(1):144-150.SUN Y J,ZHOU X,YUE L N,et al. Preparation of polyaluminium ferric chloride from industrial solid waste and its application in the treatment of coal slime wastewater[J]. Multipurpose Utilization of Mineral Resources, 2021(1):144-150. doi: 10.3969/j.issn.1000-6532.2021.01.025
SUN Y J,ZHOU X,YUE L N,et al. Preparation of polyaluminium ferric chloride from industrial solid waste and its application in the treatment of coal slime wastewater[J]. Multipurpose Utilization of Mineral Resources, 2021(1):144-150. doi: 10.3969/j.issn.1000-6532.2021.01.025
[3] 何青峰,曾利群,何朝晖,等. 除氯处理的PAC废渣的细度和掺量对水泥性能影响的研究[J]. 无机盐工业, 2020, 52(4):84-87.HE Q F,ZENG L Q,HE Z H,et al. Study on effect of fineness and dosage of PAC waste residue on cement performance[J]. Inorganic Chemicals Industry, 2020, 52(4):84-87. doi: 10.11962/1006-4990.2019-0401
HE Q F,ZENG L Q,HE Z H,et al. Study on effect of fineness and dosage of PAC waste residue on cement performance[J]. Inorganic Chemicals Industry, 2020, 52(4):84-87. doi: 10.11962/1006-4990.2019-0401
[4] ACHIK M , BENMOUSSA H , OULMEKKI A , et al. Evaluation of technological properties of fired clay bricks containing pyrrhotite ash[J]. Construction and Building Materials, 2020(269):121312.
[5] 李国旺,陈胜强,周祎,等,城市污泥制备烧结砖实验研究[J].新型建筑材料,2021,48(11):166-170.LI G W,CHEN S Q,ZHOU Y,et al. Experimental study on preparation of sintered bricks with urban sludge[J].New Building Materials,2021,48(11):166-170.
LI G W,CHEN S Q,ZHOU Y,et al. Experimental study on preparation of sintered bricks with urban sludge[J].New Building Materials,2021,48(11):166-170.
[6] TAHA Y,BENZAAZOUA M,HAKKOU R,et al. Naturalclay substitution by calamine processing wastes to manufacture fired bricks[J]. Journal of Cleaner Production, 2016, 135(nov.1):847-858.
[7] 李娜,向浩,鲁义军,等. 聚合氯化铝生产废渣的处理与利用[J]. 化工学报, 2011, 62(5):1441-1447.LI N,XIANG H,LU Y J,et al. Treatment and utilization of waste residue produced from polyaluminium chloride process[J]. CIESC Journal, 2011, 62(5):1441-1447. doi: 10.3969/j.issn.0438-1157.2011.05.039
LI N,XIANG H,LU Y J,et al. Treatment and utilization of waste residue produced from polyaluminium chloride process[J]. CIESC Journal, 2011, 62(5):1441-1447. doi: 10.3969/j.issn.0438-1157.2011.05.039
[8] 李峰,崔孝炜,刘璇,等. 钼尾矿在建筑材料中的二次利用研究进展[J]. 矿产综合利用, 2021(3):132-139.LI F,CUI X W,LIU X,et al. Research progress on secondary utilization of molybdenum tailings in building materials[J]. Multipurpose Utilization of Mineral Resource, 2021(3):132-139.
LI F,CUI X W,LIU X,et al. Research progress on secondary utilization of molybdenum tailings in building materials[J]. Multipurpose Utilization of Mineral Resource, 2021(3):132-139.
[9] 赵思源,刘卫东,陆美荣. 市政污泥制备烧结砖的实验研究[J]. 新型建筑材料, 2022, 49(5):92-95.ZHAO S Y,LIU W D,LU M R. Experimental study on preparation of sintered brick from municipal sludge[J]. New Building Materials, 2022, 49(5):92-95. doi: 10.3969/j.issn.1001-702X.2022.05.021
ZHAO S Y,LIU W D,LU M R. Experimental study on preparation of sintered brick from municipal sludge[J]. New Building Materials, 2022, 49(5):92-95. doi: 10.3969/j.issn.1001-702X.2022.05.021
[10] 全国墙体屋面及道路用建筑材料标准化技术委员会.烧结普通砖标准:GB 5101-2017[S]. 北京:中国标准出版社,2017.National Technical Committee for Standardization of Building Materials for Walls, Roofs and Roads. Standard for Fired common bricks: GB 5101-2017 [S]. Beijing: China Standard Press, 2017.
National Technical Committee for Standardization of Building Materials for Walls, Roofs and Roads. Standard for Fired common bricks: GB 5101-2017 [S]. Beijing: China Standard Press, 2017.
[11] 刘俊杰,梁钰,曾宇,等. 利用铁尾矿制备免烧砖的研究[J]. 矿产综合利用, 2020(5):136-141.LIU J J,LIANG Y,ZENG Y, et al. Study on preparation of unburned brick with iron tailings[J]. Multipurpose Utilization of Mineral Resources, 2020(5):136-141. doi: 10.3969/j.issn.1000-6532.2020.05.021
LIU J J,LIANG Y,ZENG Y, et al. Study on preparation of unburned brick with iron tailings[J]. Multipurpose Utilization of Mineral Resources, 2020(5):136-141. doi: 10.3969/j.issn.1000-6532.2020.05.021
[12] QUIJORNA N,COZ A,ANDRES A,et al. Recycling of Waelz slag and waste foundry sand in red clay bricks[J]. Resources Conservation & Recycling, 2012, 65(none):1-10.
[13] 陈永亮. 鄂西低硅铁尾矿烧结制砖及机理研究[D]. 武汉:武汉科技大学,2012.CHEN Y L. Prepaiation and mechanism of fired bricks and tiles with low-silicon tron tailings from western Hubei[D]. Wuhan:Wuhan University of Science and Technology,2012.
CHEN Y L. Prepaiation and mechanism of fired bricks and tiles with low-silicon tron tailings from western Hubei[D]. Wuhan:Wuhan University of Science and Technology,2012.
[14] 黄杰,王星,徐名特. 成型条件对钼尾矿粉煤灰烧结砖性能的影响[J]. 矿业工程, 2022, 20(1):51-54.HUANG J,WANG X,XU M T. Influence of formation condition to the performance of molybdenum tailing coal ash sintering brick[J]. Mining Engineering, 2022, 20(1):51-54. doi: 10.3969/j.issn.1671-8550.2022.1.gwjsks202201012
HUANG J,WANG X,XU M T. Influence of formation condition to the performance of molybdenum tailing coal ash sintering brick[J]. Mining Engineering, 2022, 20(1):51-54. doi: 10.3969/j.issn.1671-8550.2022.1.gwjsks202201012
[15] 邹智秀,欧天安,谭旭升,等. 利用红土镍尾矿制备烧结墙体材料实验研究[J]. 新型建筑材料, 2016, 43(6):60-63.ZOU Z X,OU T A,TAN X S,et al. Research on making sintering wall materials with laterite-nickel tailings[J]. New Building Materials, 2016, 43(6):60-63.
ZOU Z X,OU T A,TAN X S,et al. Research on making sintering wall materials with laterite-nickel tailings[J]. New Building Materials, 2016, 43(6):60-63.
[16] Karaman S,Gunal H,Ersahin S. Assessment of clay bricks compressive strength using quantitative values of colour components[J]. Constr Build Mater, 2006, 20(5):348-354. doi: 10.1016/j.conbuildmat.2004.11.003
[17] 张忠亮,金容旭,张雪梅,等. 利用海上油气田水基钻井废物制备烧结砖[J]. 环境工程学报, 2021, 15(9):3020-3028.ZHANG Z L,JIN R X,ZHANG X M,et al. Preparation of sintered brick from water-based drilling wastes inoffshore oil and gas field[J]. Chinese Journal of Environmental Engineering, 2021, 15(9):3020-3028. doi: 10.12030/j.cjee.202105065
ZHANG Z L,JIN R X,ZHANG X M,et al. Preparation of sintered brick from water-based drilling wastes inoffshore oil and gas field[J]. Chinese Journal of Environmental Engineering, 2021, 15(9):3020-3028. doi: 10.12030/j.cjee.202105065
[18] 陈永亮,张一敏,陈铁军,等. 温度制度对尾矿烧结砖性能及结构的影响[J]. 硅酸盐通报, 2010, 29(6):1343-1347.CHEN Y L,ZHANG Y M,CHEN T J,et al. Effect of temperature system on properties and microstructure of fired bircks prepared with tailings[J]. Bulletin of the Chinese Ceramic Society, 2010, 29(6):1343-1347.
CHEN Y L,ZHANG Y M,CHEN T J,et al. Effect of temperature system on properties and microstructure of fired bircks prepared with tailings[J]. Bulletin of the Chinese Ceramic Society, 2010, 29(6):1343-1347.
[19] 周伟伦,廖正家,陈涛,等. 利用铁尾矿制备烧结砖的可行性及烧结固化机理[J]. 环境工程学报, 2021, 15(5):1670-1678.ZHOU W L, LIAO Z J, CHEN T, et al. Feasibility of using iron tailings to prepare sintering brick and sinteringsolidification mechanism[J]. Chinese Journal of Environmental Engineering, 2021, 15(5):1670-1678. doi: 10.12030/j.cjee.202012132
ZHOU W L, LIAO Z J, CHEN T, et al. Feasibility of using iron tailings to prepare sintering brick and sinteringsolidification mechanism[J]. Chinese Journal of Environmental Engineering, 2021, 15(5):1670-1678. doi: 10.12030/j.cjee.202012132
-