-
摘要:
为了清洁高效利用湿法磷酸生产得到的萃余酸,创新性地提出将其应用于磷矿浮选过程。在磨矿细度、捕收剂用量、pH几乎不变条件下,萃余酸全部取代硫酸的闭路浮选后,获得P2O5品位为29.73%、MgO品位为0.78%,P2O5回收率为88.55%的浮选精矿。用萃余酸作为磷矿反浮选pH调整剂,用量远低于硫酸,为磷矿企业萃余酸循环利用提供了新思路。
Abstract:The raffinate acid obtained from the production of wet-process phosphoric acid for clean and efficient utilization is innovatively used in the flotation of phosphate ore. The flotation concentration with the P2O5 grade of 29.73%, the MgO grade of 0.78% and the P2O5 recovery of 88.55% is obtained under the condition of stable grinding fineness, collector dosage, pH after the closed-circuit flotation where the raffinate acid completely replaces the sulfuric acid. The raffinate, whose dosage is much lower than sulfuric acid, is used as pH regulator for reverse flotation of phosphate ore, which provides a new idea for recycling raffinate in phosphate mining enterprises.
-
Key words:
- raffinate acid /
- phosphate ore /
- reverse flotation
-
-
表 1 矿样多元素分析结果表
Table 1. Results of multi-element analysis of samples
/% 元素 P2O5 MgO Fe2O3 Al2O3 SiO2 CaO 含量 20.40 5.66 0.86 1.36 16.36 36.52 表 2 萃余酸分析结果
Table 2. Analysis results of raffinate acid
/% 组分 P2O5 含固量 密度/(g·mL-1) SO42- Fe2O3 Al2O3 MgO H+/(mol·L-1) 含量 46.65 11.49 1.78 3.88 1.53 2.9 4.55 0.56 表 3 闭路浮选试验结果
Table 3. Test results of closed circuit
产品名称 产率/% 品位/% 回收率/% P2O5 MgO P2O5 精矿 61.91 29.73 0.78 88.55 尾矿 38.09 6.25 13.21 11.45 原矿 100.00 20.78 5.71 100.00 -
[1] 范益堃. 萃余酸生产工业级磷酸一铵工艺优化及氨化数值模拟[D]. 武汉: 武汉工程大学, 2016.
[2] 黄春梅, 陈泽恩, 张峰, 等. 扩散渗析法分离纯化萃余酸技术研究[J]. 磷肥与复肥, 2020, 35(5): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-LFYF202005005.htm
[3] LIU X, LUO H H, CHENG R J, et al. Effect of citric acid and flotation performance of combined depressant on collophanite ore[J]. Minerals Engineering, 2017, 109: 162-168. doi: 10.1016/j.mineng.2017.03.010
[4] 谢国先, 罗廉明, 夏敬源, 等. 钙(镁)质胶磷矿脱镁反浮选酸的作用机理探析[J]. 化工矿物与加工, 2010, 39(10): 9-10. doi: 10.3969/j.issn.1008-7524.2010.10.003
[5] 方福跃. 胶磷矿正反浮选工艺在海口磷矿的工业探索[C]. 第六届世界磷矿加工大会论文集. 2011: 57-59.
[6] 李若兰, 宋慧琳, 张朝旺, 等. 海口磷矿正-反浮选工艺选矿试验研究[J]. 非金属矿, 2015(5): 45-47. doi: 10.3969/j.issn.1000-8098.2015.05.014
[7] KWANGSOK J, YONGCHOL H, SOKCHOL R. Flotation Mechanism of Oleic acid amide on Apatite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532: 127-131. http://www.sciencedirect.com/science/article/pii/S0927775716309797
[8] WILLS BA. Nappier-Munn TWills'mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery[M]. Butterworth-Heinemann, Elsevier, 1988.
[9] YANG B, CAO H S, ZHU Z L, et al. Selective flotation separation of apatite from dolomite utilizing a novel eco-friendly and efficient depressant for sustainable manufacturing of phosphate fertilizer[J]. Journal of Cleaner Production, 2020, 124949. http://www.sciencedirect.com/science/article/pii/S0959652620349933
[10] EVERTON P S, ACHILLES J B D, JOSE F O. The effect of jojoba oil on the surface properties of calcite and apatite aiming at their selective flotation[J]. International Journal of Mineral Processing, 2015, 143: 34-38. doi: 10.1016/j.minpro.2015.08.002
[11] 王淀佐, 胡岳华著. 浮选溶液化学[M]. 长沙: 湖南科学技术出版社, 1988.
[12] LIU X, RUAN YY, LI CX, et al. Effect and mechanism of phosphoric acid in the apatite/dolomite flotation system, International Journal of Mineral Processing, 167, 2017: 95-102,
[13] LIU X, RUAN Y Y, LI C X, et al. Effect and mechanism of phosphoric acid in the apatite/dolomite flotation system[J]. International Journal of Mineral Processing, 2017, 167(10): 95-102. http://www.sciencedirect.com/science/article/pii/S0301751617301813
-